Equivalency of Bioassessment Protocols Leslie J. Potts, PhD Brian Belcher, PhD, PE Chuck Davis, PE, CFM

Outline

- Stream bioassessments why & how?
- Brief History
- RBP vs SQT
- Conclusions

Stream Bioassessments

- Why?
 - o Existing Conditions to guideRestoration Efforts
 - o Success of Restoration Efforts
- How?
 - o Accurately & Efficiently
 - o Complex Environments

Brief History

Buss et al., 2014 examined global stream bioassessment protocols for *macroinvertebrates scores*

Doll et al., 2016 examined restored streams in NC using 5 different stream bioassessment protocols to test predictability of *macroinvertebrate scores*

Donatrich et al., 2020 examined SQT-assessed streams for predictability in *macroinvertebrate/biology scores*

- Our aim is to test the equivalency of two common bioassessment protocols (RBP, SQT) for:
 - Correlation of Protocols
 - Relationship between Protocols & Restoration Approach
 - Efficiency of protocols
- Our goal is to provide regulators and policy makers with data of common stream bioassessment protocols concerning their *correlations and effect on site development* and project objectives.

Rapid Bioassessment Protocol (RBP) (Barbour et al., 1999)

• The primary purpose is to describe a practical technical reference for conducting <u>cost-effective</u> biological assessments of lotic systems.

 The protocols presented are not necessarily intended to replace those already in use for bioassessment nor is it intended to be used <u>without</u> <u>regional modifications</u>.

Category	Description	
Epifaunal Substrate	Substrate suitable for colonization potential (submerged logs, undercut banks, cobble, etc)	
Embeddedness	Percent of gravel, cobble, boulder particles surrounded by sediment	
Velocity/Depth Regime	Presence of riffle, pool, glide, run structures	
Sediment Deposition	Islands, point-bars	
Channel Flow Status	Percent water fills channel	
Channel Alteration	Channelization, dredging, etc	
Frequency of Riffles	Occurrence of riffles	- Still
Bank Stability	Percent evidence of erosion	
Vegetative Protection	Percent coverage of streambank and riparian	
Riparian Vegetation Zone	Width of protected area	

Rapid Bioassessment Protocol (RBP)

Qualitative Score	Quantitative Score
Poor	0-116
Average	117-159
Excellent	160+

Stream Quantification Tool (SQT)

Stream Mechanics

SQT was created to fulfill the following needs:

- Provide a calculator to determine the <u>numerical differences</u> between an <u>existing</u> (degraded) stream condition and the <u>proposed</u> (restored or enhanced) stream condition.
- This numerical difference is known as <u>functional lift</u> or uplift and is often used to determine <u>stream credits</u> as defined by the 2008 Federal Mitigation Rule.

Function Based-Parameters	
Catchment Hydrology	
Reach Runoff	
Floodplain Connectivity	
Large Woody Debris	
Lateral Migration	5 BIOLOGY Biodiversity and the life histories of aquatic and riparian life
Riparian Vegetation	4 Temperature and oxygen regulation, processing of organic matter and nutrients
Bed Material Characterization	3 GEOMORPHOLOGY * Transport of wood and sediment to create diverse bod forms and dynamic equilibrium
Bed Form Diversity	2 HYDRAULIC * Transport of water in the channel, on the floodplain, and through sediments
Plan Form	Transport of water from the watershed to the channel
Bacteria	Geology Climate
Organic Enrichment	
Nitrogen	
Phosphorous	
Macroinvertebrates	
Fish	
	Function Based-ParametersCatchment HydrologyReach RunoffReach RunoffFloodplain ConnectivityLarge Woody DebrisLateral MigrationRiparian VegetationBed Material CharacterizationBed Form DiversityPlan FormBacteriaOrganic EnrichmentNitrogenPhosphorousMacroinvertebratesFish

Stream Quantification Tool (SQT)

Qualitative Score	Quantitative Score
Not Functioning	0-0.3
Functioning-at-Risk	0.3-0.7
Functioning	0.7-1.0

- Mitigation Bank Site in Eastern TN
- RBP and SQT bioassessments
- Mitigation Action type determined through SQT

Average	128 (Average)
Range	81 – 175
Median	134

Wilcoxen Rank Sum Test	
W	446.5
P-value	0.6637
<i>The two datasets are NOT different.</i>	

Chi-Squared Test	
X ²	4.08
df	2
P-value	0.1299
<i>The two datasets are NOT different.</i>	

	- 1
Chi-Squared Test	
X²	23.31
df	2
P-value	0.00011
<i>There is significant difference between RBP score and</i>	
Mitigation Action.	

Conclusions

- SQT scores did NOT differ from RBP
- SQT did NOT differ from Mitigation Action
- RBP did differ from Mitigation Action

The "HOW" of Stream Assessment:

Accurately & Efficiently

Complex Environments

SWVM

SQT

HGM

SWAMPIM

RBP

Questions?

leslie@beavercreekhydrology.com

References

Buss, D. F., Carlisle, D. M., Chon, T. S., Culp, J., Harding, J. S., Keizer-Vlek, H. E., & Hughes, R. M. (2015). Stream biomonitoring using macroinvertebrates around the globe: a comparison of large-scale programs. *Environmental monitoring and assessment, 187*, 1-21.

Doll, B., Jennings, G., Spooner, J., Penrose, D., Usset, J., Blackwell, J., & Fernandez, M. (2016). Can rapid assessments predict the biotic condition of restored streams?. *Water*, *8*(4), 143.

Donatich, S., Doll, B., Page, J., & Nelson, N. (2020). Can the Stream Quantification Tool (SQT) Protocol Predict the Biotic Condition of Streams in the Southeast Piedmont (USA)?. *Water*, *12*(5), 1485.