
(a)

StreamMechanics

Lessons Learned from Regionalizing the SQT

The SQT Quantifies Functional Uplift

The SQT Quantifies Functional Loss

A goal is to create better parity between credits and debits.

Reach-scale Activities

SQT

Stream Functions Regulatory Programs

Related Works

StreamMech

A Function-Based for Stream Assessment & Restoration

ERDC/CRREL SR-21-2

Cold Regions Research and Engineering Laboratory US Army Corps of Engineers® Engineer Research and Development Center

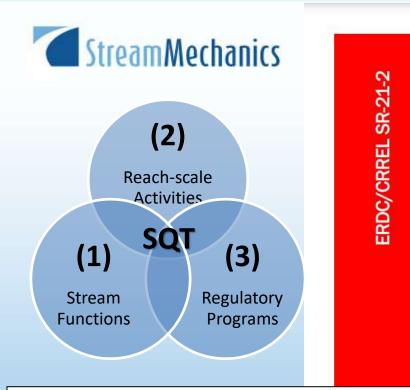
Wetland Regulatory Assistance Program (WRAP)

Technical Guide for the Development, Evaluation, and Modification of Stream Assessment Methods for the Corps Regulatory Program

Gabrielle C. L. David, D. Eric Somerville, Julia M. McCarthy, Spencer D. MacNeil, Faith Fitzpatrick, Ryan Evans, and David Wilson

Approved for public release; distribution is unlimited.

Septen


Stream Mitigation Accounting Metrics

Exploring the Use of Unear-based, Area-based, and Volume Units of Measure to Calculate Impacts and Offsets to Different Stream Archetypes

EPA 840-R-21-003

US Army Corps of Engineers® Engineer Research and Development Center

Wetland Regulatory Assistance Program (WRAP)

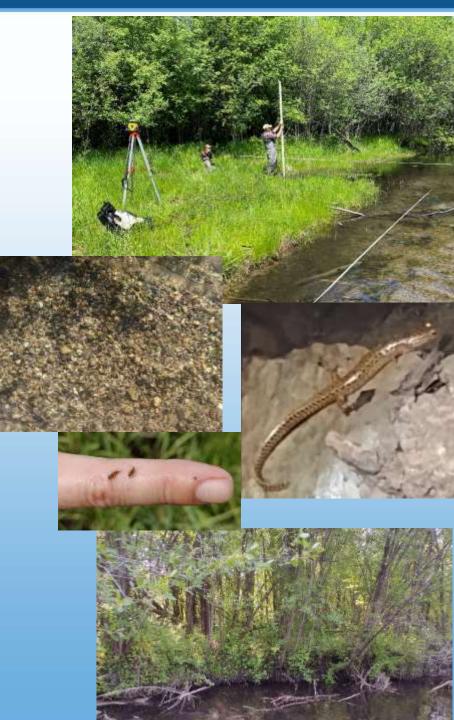
Technical Guide for the Development, Evaluation, and Modification of Stream Assessment Methods for the Corps Regulatory Program

Gabrielle C. L. David, D. Eric Somerville, Julia M. McCarthy, Spencer D. MacNeil, Faith Fitzpatrick, Ryan Evans, and David Wilson September 2021

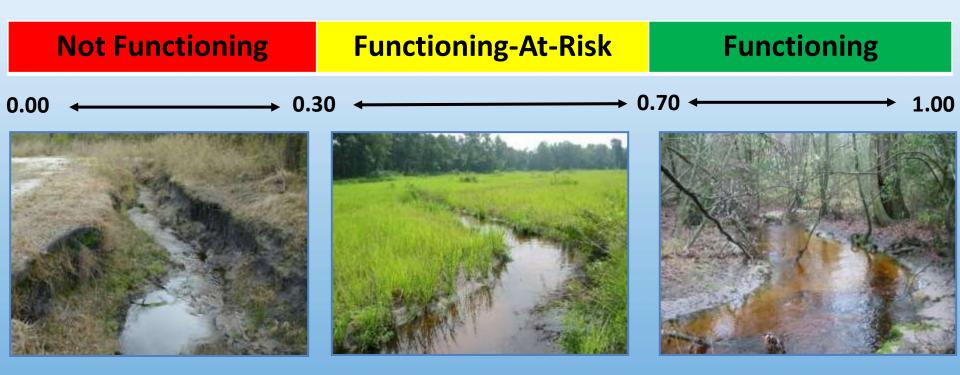
Therefore, the Regulatory Program needs function-based stream assessments (1) to characterize a stream's condition or function, (2) to improve understanding of the impact of a proposed action on an aquatic resource, and/or (3) to inform the development of stream compensatory mitigation tools rooted in stream condition and/or function. A function-based stream assessment can provide regulatory decision makers with the resources to objectively consider alternatives, minimize impacts, assess unavoidable impacts, determine mitigation requirements, and monitor the success of mitigation projects.

> gions F gineerii

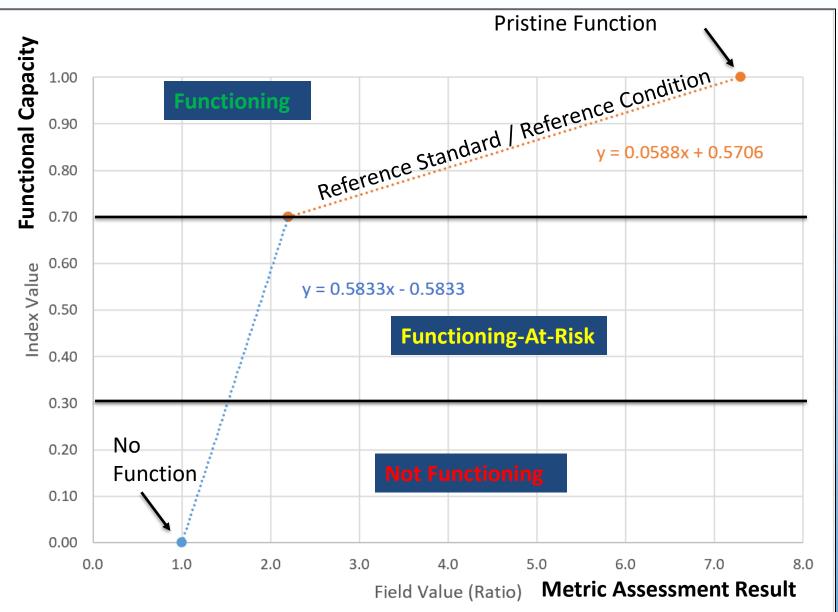
- 1. Develop SOW
- 2. Gather team
- 3. Determine functions
- 4. Select regionally relevant metrics to quantify functions
- 5. Develop reference framework
- 6. Build assessment models and develop scoring procedure
- 7. Validation & intercalibration
- 8. Peer review, public comment, and beta-testing
- 9. Implementation!



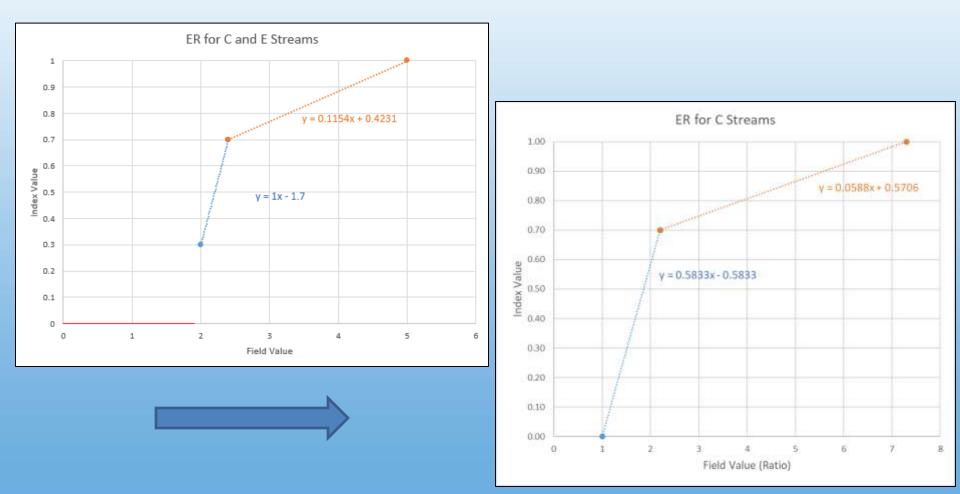
- 1. Develop SOW
- 2. Gather team
- 3. Determine functions
- 4. Select regionally relevant metrics to quantify functions
- 5. Develop reference framework
- 6. Build assessment models and develop scoring procedure
- 7. Validation & intercalibration
- 8. Peer review, public comment, and beta-testing
- 9. Implementation!


Experience requirements are required! Teams need expertise in botany, aquatic ecology, hydrology, geomorphology.

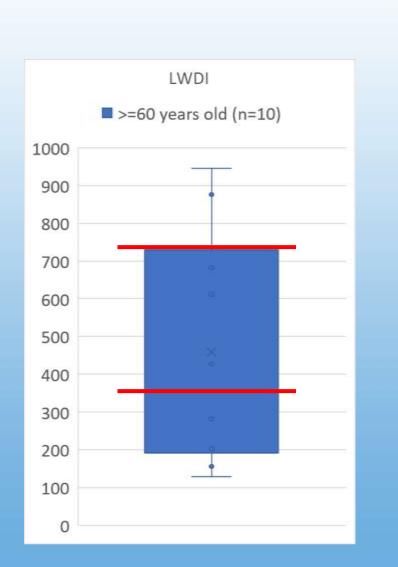
Ecosystem functions are physical, chemical, and biological processes.

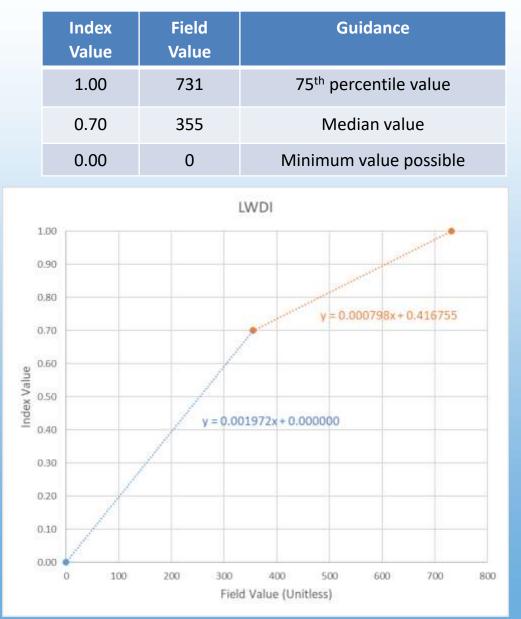


Stream condition is the relative ability to maintain an aquatic community comparable to high-quality resources.


Think Quality

We've come a long way thanks to peer review and SQT implementation.


StreamMechanics Development of Reference Standards & Curves


Define Reference thresholds using:

- New or existing data sets
 - BLM AIM dataset was used for Vegetative Complexity in the AKSQTint
- Literature
 - Peer reviewed, government docs, conferences
- Existing Indices
 - Usually from state water quality programs
- The above information is used by a team of subjectmatter experts to develop the reference curves.

StreamMechanics

LWDI

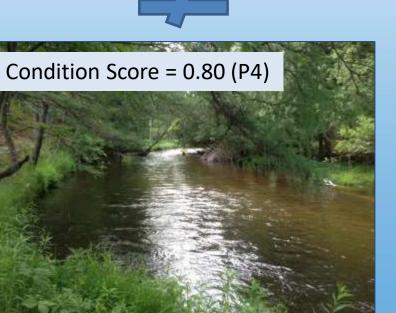
Select regionally relevant metrics to quantify functions.

- Must be able to develop a reasonable reference curve.
 - Some metrics are more suitable for design.
- Preference for physical and quantitative measures.
 - Aligns better with developing performance standards and monitoring.

Data primarily available for single-thread, wadeable, perennial streams

Applicable Parameters	Perennial	Intermittent	Ephemeral	Multi-thread Channels
Reach Runoff	x	x	x	Х
Flow Alteration	X	x		x
Baseflow Dynamics	X			
Floodplain Connectivity	x	x	x*	x (BHR only)
Large Wood*	x	X	x	Х
Lateral Migration	X	X	x	Х
Bed Form Diversity	X	X		
Riparian Vegetation	X	X	x	Х
Temperature	X			X
Dissolved Oxygen	X	Where baseflows		Х
Nutrients	X	extend through		Х
Macroinvertebrates	x	sampling period		x (perennial only)
Fish	X	X		X

Floodplain Connectivity is not used for ephemeral channels in the TN SQT



There is a desire to create a SQT version for anastomosed systems. The Unit of Measure would change from stream length to valley length and additional parameters/metrics would be added. New reference curves are needed.

The overall scores should not be compared or contrasted between sites when parameters and metric selection varies between project sites.

QT Output Summary

FUNCTION BASED PARAMETERS SUMMARY							
Functional Category	Function-Based Parameters	Existing Parameter	Proposed Parameter				
Hydrology	Catchment Hydrology						
Trydrology	Reach Runoff	0.33	0.48				
Hydraulics	Floodplain Connectivity	0.47	0.86				
Hydraulics	Flow Dynamics	0.00	1.00				
	Large Woody Debris	0.15	0.53				
	Lateral Migration	0.39	0.91				
Geomorphology	Bed Material Characterization						
	Bed Form Diversity	60	0.86				
	Riparian Vegetation	<u> </u>					
	Temperature	Goa	Goals and				
Physicochemical	Turbidity						
	Diatoms	Obje	ectives 🚬				
Pielegy	Macroinvertebrates						
Biology	Fish						

Monitoring Worksheet

Functional	Function-Based	Existing	Proposed	As-Built	Monitoring Year					
Category	Parameters	Parameter	Parameter As-Built		1	2	3	4	5	13
Hydrology	Reach Runoff	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84
Hydraulics	Floodplain Connectivity	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	Large Woody Debris	0.25	0.71	0.71	0.71	0.71	0.71	0.71	0.73	0.79
Geomorphology	Lateral Migration	0.27	0.58	0.69	0.60	0.50	0.49	0.49	0.58	0.59
	Riparian Vegetation	0.49	0.56	0.38	0.43	0.44	0.46	0.48	0.59	0.60
	Bed Form Diversity	0.64	0.90	0.90	0.90	0.90	0.86	0.86	0.85	0.85
	Temperature									
Physicochemical	Bacteria									
	Nutrients									
	Dissolved Oxygen									
Piology	Macroinvertebrates									
Biology	Fish									

FUNCTIONAL CATEGORY REPORT CARD									
Functional Catagony	ECS	DCS	As-Built	Μοι			Monitor	onitoring Year	
Functional Category	nctional Category ECS PCS	PCS	.5 AS-Built	1	2	3	4	5	13
Hydrology	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84
Hydraulics	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Geomorphology	0.41	0.69	0.67	0.66	0.64	0.63	0.63	0.69	0.70
Physicochemical							!		
Biology									
Overall Score	0.25	0.51	0.5	0.50	0.50	0.49	0.49	0.51	0.51
Functional Feet	250	561	550	550	550	539	539	561	561

QT Output Summaries

FUNCTIONAL CHANGE SUMMARY					
Existing Condition Score (ECS)	0.18				
Proposed Condition Score (PCS)	0.43				
PCS - ECS	0.25				
Existing Stream Length (ft)	1020				
Proposed Stream Length (ft)	1100				
Change in Stream Length (ft)	80				
Existing Functional Feet (FF)	183.6				
Proposed Functional Feet (FF)	473.0				
Proposed FF - Existing FF (ΔFF)	289.4 P3				
FF Yield (FF/ft)	0.26				

Low Lift / High Quality

Existing Condition:

Existing Condition Score = 0.49 Existing Stream Length = 1600 Ft Functional Foot = 784 Feet (P4)

Proposed Condition:

Proposed Condition Score = 0.55 Proposed Stream Length = 1600 Ft Functional Foot = 880 Feet (P4)

Functional Uplift = 880 – 784 = **96 FF or 0.06 FF/LF**

High Lift/Moderate Quality

Existing Condition:

Existing Condition Score = 0.19 Existing Stream Length = 972 Ft Functional Foot (ft) = 185

Proposed Condition (End of monitoring; year 5): Proposed Condition Score = 0.50 Proposed Stream Length = 1280 Ft Functional Foot (ft) = 640

Proposed Lift = 640 – 185 = 455 P2 (FF) or 0.36 FF/LF

Implementation

Need to have a plan for rollout.

Tech Support

Training