

Finding Common Ground Between Different Types of Stream Restoration Design Methods

Will Harman, PG

Presentation Overview

 A Brief Over of Restoration Approaches

 Finding Common Ground Between Approaches

Approaches

National

- Natural Channel Design
- Process Based
 - Stage O
 - Beaver Dam Analogs
 - Let the Water Do the Work

Mid-Atlantic Region

- Valley Restoration
- Regenerative Design
 - (Regional Plus)

Techniques

- Modeling
- Dam/Barrier Removal
- In-Stream Structures
- Riparian Re-Vegetation
- Floodplain Connectivity
- LWD Placement
- Levee Removal
- Stormwater BMPs
- Agricultural BMPs
- Etc.

Natural Channel Design

- Founded by Dave Rosgen
- Typical Design Goal
 - Stable channel that *transports* water and sediment without aggrading or degrading
- Published in the USDA, NRCS National Engineering Handbook, Part 654

Natural Channel Design

Strengths

- Method is well developed and tested. Likely used more than any other method
- Can be used for a wide range of problems and across many landscapes and process drivers.
- Mostly used in transport systems.
 - But not exclusively

Figure From: Castro, J.M. and C.R. Thorne. 2019. The stream evolution triangle: Integrating geology, hydrology, and biology. River Research and Applications. 2019; 1-12, John Wiley and Sons

Natural Channel Design

Weakness / Criticisms

- Practitioners sometimes over-assume that sediment transport is needed.
- Practitioners overuse in-stream structures.
- Projects are called NCD when they're not.

Process-Based Restoration

- Came from a desire to have more holistic restoration efforts that focus on the root cause of degradation with more cost-effective restoration methods.
- Aim is to restore normative rates and magnitudes of physical, chemical, and biological processes that create and sustain river and floodplain ecosystems.

Source: *Stream and Watershed Restoration*: A Guide to Restoring Riverine Processes and Habitats. Edited by Philip Roni and Tim Beechie.

Process Based Restoration

Strengths

- Often cheaper than other approaches with a "let the river do the work" philosophy
- Often restores more functions than other approaches by focusing on the river corridor.
 - Stream and floodplain; stream-wetland complex / river-wetland corridor.

Process Based Restoration

- Applications
 - Stage O
 - Beaver Dam Analogs
 - Let the River Do the Work
- Process Drivers
 - Mostly applicable in reaches with wide floodplains, low stream power, low sediment supply, and high biotic interaction.

Process Based Restoration

<u>Weaknesses</u>

- May take a long time to recognize functional uplift.
- Results may not last.
- May not align with regulatory requirements. For example:
 - Mitigation requirements
 - Resource conversion

Two Regional Approaches

- Valley Restoration
 - Developed by Art Parola and the University of Louisville Stream Institute.
- Regenerative Stream Conveyance
 - Developed by Keith Underwood and Underwood Associates
- Both are used a lot in the Mid Atlantic Region

Valley Restoration

- Common Characteristics
 - Valley-wide grade control
 - Base-flow channel
 - Wet floodplain (stream-wetland complex)
 - Often includes removal of legacy sediments

Regenerative Stream Conveyance

- Major focus is to re-connect stream to floodplain and enable robust interaction between groundwater and surface water.
- Goal is to reverse the degradation trend and reset the stream corridor into a regenerative mode.
- Regenerative Stormwater Conveyance is recognized as a BMP.

MD DNR, Regenerative Stream Conveyance, First Edition. Annapolis, MD DNR # 14-091418-95

Finding Common Ground Between Approaches

Realize that Others May Define Stream Restoration Differently.

Finding Common Ground

Avoid the word "All."

As in...

- All streams real stomosed.
- All stream re r port systems.

Embrace the "It Depends!"

Or

Finding Common Ground: Goals Matter

- Programmatic
 - Think funding driver
 - Who is paying you to do the project and what do they want
- Examples
 - Compensatory mitigation
 - TMDL
 - Grants
 - Recreation
 - Personal
 - ESG Rating
- Don't forget Regulations

Common Ground: Right Tool for the Problem

Finding Common Ground Between Approaches

Recognize that the Approach Name Matters Less than the Result.

Finding Common Ground Summary

- Recognize that we may define stream restoration differently.
- We work within diverse programs with diverse goals.
- We have many tools, strive to use the right one for the given problem.
- Recognize that the name matters less than the result.