APPLICABILITY OF STREAM QUANTIFICATION TOOLS FOR ASSESSING COMPENSATORY MITIGATION CREDITS FROM RESTORATION

Brian Murphy, PhD, PH, PE

Principal, River Works, Ltd. Denver, Colorado

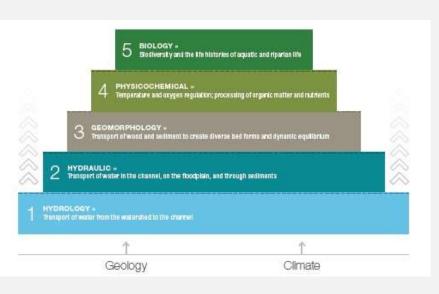
John Schwartz, PhD, PE

University of Tennessee, Knoxville Professor, Dept. of Civil & Environmental Engineering Director, Tennessee Water Resources Research Center

ASCE EWRI Task Committee: Natalie Collar (CO), Daniel Johnson (SC), John Ramirez Avila (MS), Chris Crose (SC), Karina Bynum (TN), Tess Thompson (VA)

Baltimore, Maryland August 22, 2023

Development of Current SQT Framework

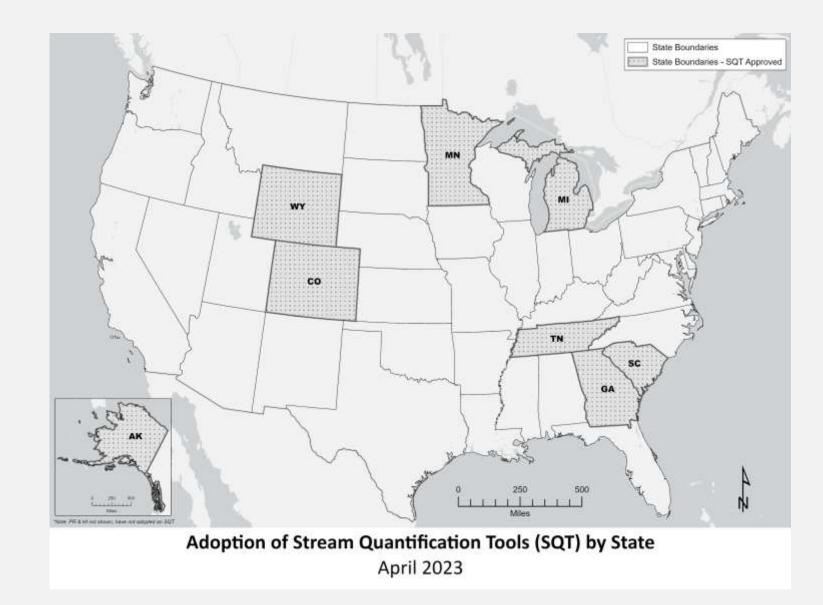

2004. USEPA/USACOE document *Physical Stream Assessment* for CWA Section 404. by Somerville and Pruitt survey protocols used by practitioners dominated by Rosgen restoration methods.

2006. USACOE ERDC TN-EMRRP SR-52 document on *Functional Objectives for Stream Restoration* by JC Fischenich published summarizing five primary functions, as follow (Table 1)....

System Dynamics	Hydrologic Balance	Sediment Processes and Character	Biological Support	Chemical Processes and Pathways
Stream Evolution Processes	Surface Water Storage Processes	Sediment Continuity	Biological Communities and Processes	Water and Soil Quality
Energy Management	Surface / Subsurface Water Exchange	Substrate and Structural Processes	Necessary Habitats for all Life Cycles	Chemical Processes and Nutrient Cycles
Riparian Succession	Hydrodynamic Character	Quality and Quantity of Sediments	Trophic Structures and Processes	Landscape Pathways

• System Dynamics • Hydrologic Balance

- Sediment Processes & Character
- Biological Support
 Chemical Processes & Pathways



2012. USEPA/USFWS - EPA 843-K-12-006 A Function-Based Framework for Stream Assessments and Restoration Projects by Harman et al. published a pyramid-structured framework. Functional categories hierarchically and linearly organized for hydrology, hydraulics, geomorphology, physiochemical, and biology.

COMPENSATORY MITIGATION :: SQT REVIEW

Current State SQTs:

Wyoming Colorado Georgia Tennessee Minnesota Michigan South Carolina Alaska

US Army Corps of Engineers ERDC TN-EMRRP SR-52 September 2006

Five functional categories and 15 critical functions identified by U.S./International Committee.

System Dynamics

- Hydrologic Balance
- Sediment Processes and Character
- Biological Support
- Chemical Processes and Pathways

Table 1. Summary of Primary Functions.

System Dynamics	Hydrologic Balance	Sediment Processes and Character	Biological Support	Chemical Processes and Pathways
Stream Evolution Processes	Surface Water Storage Processes	Sediment Continuity	Biological Communities and Processes	Water and Soil Quality
Energy Management	Surface / Subsurface Water Exchange	Substrate and Structural Processes	Necessary Habitats for all Life Cycles	Chemical Processes and Nutrient Cycles
Riparian Succession	Hydrodynamic Character	Quality and Quantity of Sediments	Trophic Structures and Processes	Landscape Pathways

OVERVIEW

The National Research Council (1996) defined restoration as the return of the form and function of an ecceystem to its predisturbance condition...⁵ This definition presents two challenges when working in today's environment.

First, the significant hydrological changes and infrastructure encroachments found in many watersheds often prevent the reestablishment of the stream form to a condition prior to disturbance. These streams have a new form consistent with the altered conditions, and may not be able to maintain functions associated with a pre-disturbance condition.

Second, while the general concept of "functions" can be grasped by most, the specific functions provided by streams and ripartian comdors have yet to be defined in a manner that can serve as a basis for assessment, design, and management.

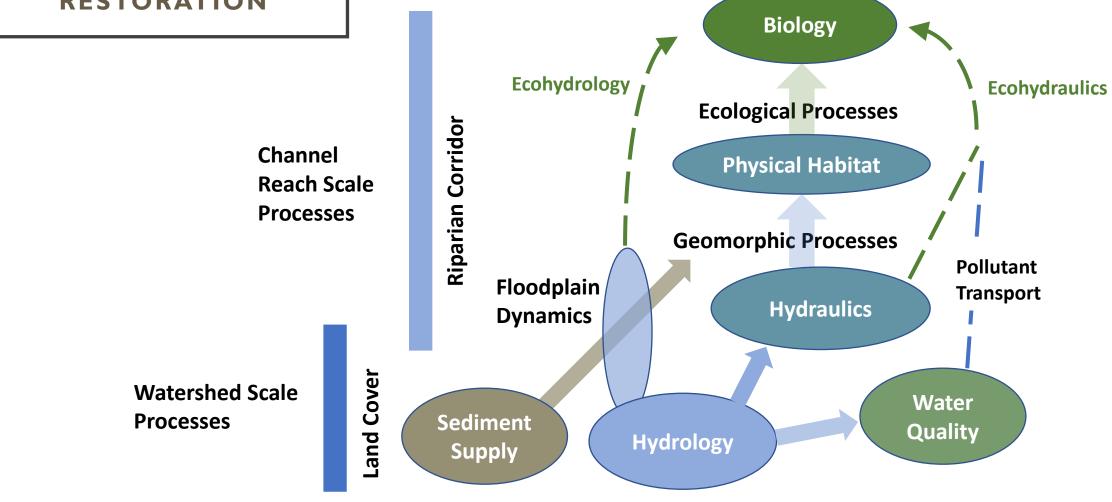
The recommendations presented in this document center on the recognition that the character of stream systems (and, thus, their value or potential to support certain uses) is a result of a set of dynamic and interrelated processes referred to as functions in this report. Fifteen critical functions were identified by a committee of U.S. and international scientists, engineers, and practitioners, and were synthesized into a framework for acceptem evaluation. Understanding the basic functions of streams and riparian corridors provides planners and designers with a concise and effective basis from which to evaluate proposed projects, and offers several powerful advantages over assessments that focus upon beneficial uses. Use of functions and processes can be elegantly incorporated within a systems approach, enhancing understanding, enabling predictions, and supporting management decisions.

This report presents the functional framework and discusses ways in which the framework can be applied to support the Corps' Ecosystem Restoration and Urban Flood Damage Reduction Programs.

Figure 1. Healthy streams and riparian zones support important functions, even if their form has been altered from historic conditions.

¹ USAE Research and Development Center, 3009 Halls Ferry Rd., Voksburg, MS 39190 ERDC TN-EMRRP SR-52

FUNCTIONAL OBJECTIVES FOR STREAM RESTORATION


- System Dynamics
- Hydrologic Balance
- Sediment Processes and Character
- Biological Support
- Chemical Processes and Pathways
- C. Fischenich, 2003

Interconnectedness among functional categories operating at different spatial and temporal scales

Functional Category	Function [Directly Affected Functions
	1. Hydrodynamic character	15. Aquatic and riparian habitats
	2. Stream evolution processes	Chemical processes and nutrient cycles
System Dynamics		9. Biological communities and processes
	3. Surface water storage processes	11 Water and soil quality
	6. Energy management processes	6. Energy management processes
Hydrologic Balance	5. Riparian succession	5. Riparian succession
	4. Sediment continuity	4 Sediment continuity
	8. Quality and quantity of sediments	7. Substrate and structural processes
Sediment Processes and Character	7. Substrate and structural processes	1 Hydrodynamic character
	9. Biological communities and processes	8. Quality and quantity of sediments
Biological Support	12 Landscape pathways	3. Surface water storage processes
	10. Surface/subsurface water exchange	10. Surface/subsurface water exchange
Chemical Processes and Pathways	11. Water and soil quality	13. Trophic structure and processes
	15. Aquatic and riparian habitats	12. Landscape pathways
	14. Chemical processes and nutrient cycl 13. Trophic structure and processes	es 2. Stream evolution processes

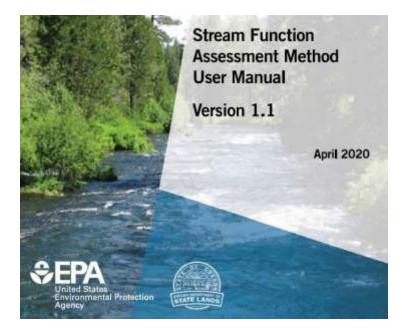
Interrelatedness of Functions

FUNCTIONAL FRAMEWORK FOR STREAM RESTORATION

Stream Assessments:

Over decades, many methods have been developed to assess stream functions based on quantifying physical, chemical, and biological processes that maintain stream ecosystems (404 regulations: 33 CFR 333.2).

The many stream assessments use a measurement method to quantify function-based parameters and their functional capacity to measure the degree to which an area of aquatic resource preforms a specific function (33 CFR 332.2). Parameters may be grouped into components of an assessment framework, functional categories to measure functional capacity.


Examples: Selected Stream Assessments

- USEPA EMAP Habitat Survey Protocols
- Oregon Stream Function Assessment Method
- USEPA Rapid Bioassessment Protocols
- CO River Health Assessment Framework

- River Condition Assessment Tool
- Stream Quality Index
- USFS Stream Inventory Protocols
- Others.....

OREGON STREAM FUNCTIONAL ASSESSMENT

- Oregon Stream Functional Assessment Method (SFAM, Quantification Tool) –
- Functional Groups:
 - Hydrology
 - Geomorphology
 - Biological
 - Water Quality

Table 2.1 Stream Function Categorization, Definition, and Ecosystem Services Provided

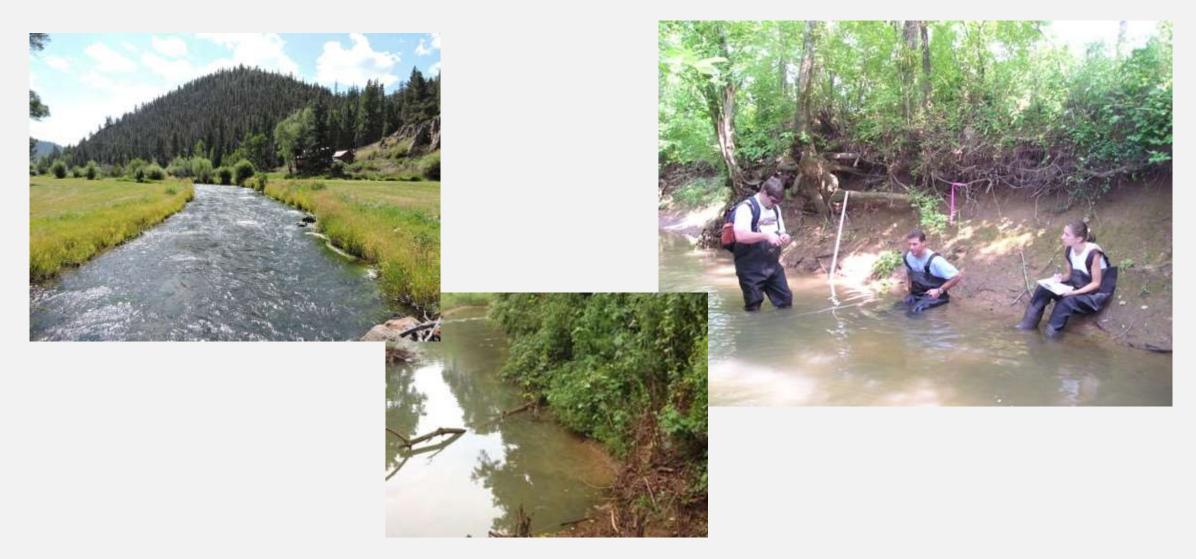
FUNCTIONAL GROUP	SPECIFIC FUNCTIONS	DEFINITION AND SERVICES/VALUES PROVIDED				
	Surface water storage (SWS)	Temporary storage of surface water in relatively static state, generally during high flow, as in floodplain inundation, backwater channels, wetland depressions. Providing regulating discharge, replenishes soil moisture, provides pathways for fish and invertebrate movement, low velocity habitat and refuge, and contact time for biogeochemical processes.				
Hydrologic functions	Sub/surface transfer (SST)	Transfer of water between surface and subsurface environments, often through hyporheic zone. Provides aquifer recharge, base- flow, exchange of nutrients/chemicals through hyporheic, moderates flow, and maintains soil moisture.				
	Flow variation (FV)	Daily, seasonal and inter-annual variation in flow. Provides variability in stream energy driving channel dynamics, provides environmental cues for life history transitions, redistributes sediment, provides habitat variability (temporal), provides sorting of sediment and differential deposition.				
Geomorphic functions	Sediment continuity (SC)	The balance between transport and deposition of sediment such that there is no net erosion or deposition (aggradation or degradation) within the channel. Maintains channel character and associated habitat diversity, provides sediment source and storage for riparian and aquatic habitat succession, maintains channel equilibrium.				
	Substrate mobility (SM)	Regular movement of channel bed substrate. Provides sorting of sediments, mobilizes/flushes fine sediment, creates and maintains hydraulic diversity, creates and maintains habitat.				
	Maintain biodiversity (MB)	Maintain the variety of species, life forms of a species, community compositions, and genetics. Biodiversity provides species and community resilience in the face of disturbance and disease, full spectrum trophic resources, balance of resource use (through interspecies competition).				
Biological functions	Create and maintain habitat (aquatic/ riparian) (CMH)	Create and maintain the suite of physical, chemical, thermal and nutritional resources necessary to sustain organisms. Habitat sustains native organisms. Habitat includes in-channel habitat, as defined largely by depth, velocity, and substrate, and riparian habitat, as defined largely by vegetative structure.				
	Sustain trophic structure (STS)	Production of food resources necessary to sustain all trophic levels including primary producers, consumers, prey species and predators. Trophic structure provides basic nutritional resources for aquatic resources, regulates the diversity of species and communities.				
	Nutrient cycling (NC)	Transfer and storage of nutrients from environment to organisms and back to environment. Provides basic resources for primary production, regulates excess nutrients, provides sink and source for nutrients.				
Water Quality functions	Chemical regulation (CR)	Moderation of chemicals in the water. Limits the concentration of beneficial and detrimental chemicals in the water.				
	Thermal regulation (TR)	Moderation of water temperature. Limits the transfer and storage of thermal energy to and from streamflow and hyporheic zone.				

OREGON STREAM FUNCTIONAL ASSESSMENT

• Oregon Stream Functional Assessment Method (SFAM, Quantification Tool)

Table 2.2 SFAM Function and Value Measures

Functi	on Measures
F1	Natural Cover
F2	Invasive Vegetation
F3	Native Woody Vegetation
F4	Large Trees
F5	Vegetated Riparian Corridor Width
F6	Fish Passage Barriers
F7	Floodplain Exclusion
F8	Bank Armoring
F9	Bank Erosion
F10	Overbank Flow
F11	Wetland Vegetation
F12	Side Channels
F13	Lateral Migration
F14	Wood
F15	Incision
F16	Embeddedness
F17	Channel Bed Variability


Value N	leasures
V1	Rare Species Occurrence & Special Habitat Designations
V2	Water Quality Impairments
V3	Protected Areas
V4	Impervious Area
V5	Riparian Area
V6	Extent of Downstream Floodplain Infrastructure
V7	Zoning
V8	Frequency of Downstream Flooding
V9	Impoundments
V10	Fish Passage Barriers
V11	Water Source
V12	Surrounding Land Cover
V13	Riparian Continuity
V14	Watershed Position
V15	Flow Restoration Needs
V16	Unique Habitat Features

Metrics are scored 0.0 to 1.0 and quantified similarly to other SQTs

COMPENSATORY MITIGATION :: SQT REVIEW

General Review of GA, CO/WY, SC, and TN

GEORGIA SQT

- Georgia Stream Quantification Tool
 - Slides from Eric Somerville, USEPA

Ecological Performance Standards

- Based on project objectives,
- Based on attributes that are <u>objective</u> and verifiable,

 Used to determine if the project is developing into the desired resource type & providing the <u>expected</u> <u>functions.</u>

Removed categories Hydrology and Physiochemical 5 **BIOLOGY** » Biodiversity and the life histories of aquatic and riparian life

3 **GEOMORPHOLOGY** » Transport of wood and sediment to create diverse bed forms and dynamic equilibrium

HYDRAULIC » Transport of water in the channel, on the floodplain, and through sediments

GEORGIA SQT

Georgia Stream Quantification Tool

Slide Justin Hammond, USACE

	EXISTING CO	NDITION ASSESSMENT			l.		Roll Up Scor	ing	
Functional Category	Function-Based Parameters	Measurement Method	Field Value	index Value	Parameter	Category	Category	Overall	Overall
Hydraulics	Roodplain Connectivity	Bank Height Ratio	1.90	0.31	0.31	0.31	Functioning At Risk		
пушацись	Hoodpain Connectinty	Entrenchment Ratio	2.00	0.30	0.51	0.51	FUNCTIONING AT MISK		
	Riparian Vegetation	Left Buffer Width (ft)	0	0.00	0.00				
	reparativege carian	Right Buffer Width (ft)	0	0.00		-			
Geomorphology		Pool Spacing Ratio	2.60	0.75		0.29	Net Public Some of		
	Bed Form Characterization	Percent Riffle	30	0.82	0.58			0.20	
		LWD Index	25	0.16				47.20	
		Genus Taxa Richness	10						
		Proportion Genus-level EPT Richness	10.00						
Biology	Macros	Proportion Genus-level Clinger Richness	10.00	0.00	0.00	0.00	Ner Fanzenseit		
		Burger alter a second state of the state of the second	10.00						
		Proportion Genus-level Shredder Richness	10.00						
	PROPOSED C		1000		· ·		Poll 1in Scor	ing	
Functional Category		ONDITION ASSESSMENT		index Value	Parameter	Category	Roll Up Scor		Overal
Functional Category	Function-Based Parameters	ONDITION ASSESSMENT Measurement Method	Field Value	Index Value		Category	Category	ing Overall	Overall
ten U		ONDITION ASSESSMENT	Field Value	Index Value	Parameter 0.85	Category 0.85			Överall
164 U	Function-Based Parameters	ONDITION ASSESSMENT Measurement Method Bank Height Ratio	Field Value 1.00 2.40	1.00	0.85	1000	Category		Overall
106 U	Function-Based Parameters	ONDITION ASSESSMENT Measurement Method Bank Height Ratio Entrenchment Ratio	Field Value	1.00		1000	Category		Overall
iydraulics	Function-Based Parameters	ONDITION ASSESSMENT Measurement Method Bank Height Ratio Entrenchment Ratio Left Buffer Width (ft) Right Buffer Width (ft)	Field Value 1.00 2.40 200	1.00 0.70 1.00	0.85	1000	Category		Overall
Hydraulics	Function-Based Parameters	ONDITION ASSESSMENT Measurement Method Bank Height Ratio Entrenchment Batio Left Buffer Width (ft)	Field Value 1,00 2,40 200 200	1.00 0.70 1.00 1.00	0.85	0.85	Category Flancholung	Overall	
Hydraulics	Function-Based Parameters Floodplain Connectivity Riparian Vegetation	ONDITION ASSESSMENT Measurement Method Bank Height Ratio Entrenchment Ratio Left Buffer Width (ft) Right Buffer Width (ft) Pool Spacing Ratio	Field Value 1,00 2,40 200 200 4,00	1.00 0.70 1.00 1.00 0.95	0.85	0.85	Category Flancholung		
tydraulics	Function-Based Parameters Floodplain Connectivity Riparian Vegetation	ONDITION ASSESSMENT Measurement Method Bank Height Ratio Entrenchment Ratio Left Buffer Width (ft) Right Buffer Width (ft) Pool Spacing Ratio Percent Riffie	Field Value 1.00 2.40 200 200 4.00 40	1.00 0.70 1.00 1.00 0.95 1.00	0.85	0.85	Category Flancholung	Overall	
iydraulics	Function-Based Parameters Floodplain Connectivity Riparian Vegetation	ONDITION ASSESSMENT Measurement Method Bank Height Ratio Entrenchment Ratio Left Buffer Width (ft) Right Buffer Width (ft) Pool Spacing Ratio Percent Riffie LWD Index	Field Value 1.00 2.40 200 200 4.00 40 200	1.00 0.70 1.00 1.00 0.95 1.00	0.85	0.85	Category Flancholung	Overall	Overall
Functional Category Hydraulics Geomorphology Biology	Function-Based Parameters Floodplain Connectivity Riparian Vegetation	ONDITION ASSESSMENT Measurement Method Bank Height Ratio Entrenchment Ratio Left Buffer Width (ft) Right Buffer Width (ft) Pool Spacing Ratio Percent Riffie LWD Index Genus Taxa Richness	Field Value 1.00 2.40 200 4.00 40 200 50	1.00 0.70 1.00 1.00 0.95 1.00	0.85	0.85	Category Flancholung	Overall	

<u>Comment</u>: Need for regionalization, lack of funding (Parameters: LWDI, % riffle, pool-spacing)

Required

Required

Optional, based on anti-degradation policy

A REVIEW: COLORADO STREAM QUANTIFICATION TOOL

Function-based Parameters: Reach Data Inputs (14 parameters, 34 metrics)

Functional Category	Function-Based Parameter	Metric	Field Value
	Reach Runoff	Land Use Coefficient Impervious Cover (%) Concentrated Flow Points (#/1000 LF)	65 0
		Water Quality Capture Volume	
Reach Hydrology &	Baseflow Dynamics	Average Velocity (fps)	4
Hydraulics		Average Depth (ft)	0.72
	Floodplain Connectivity	Return Interval (yr) Bank Height Ratio Entrenchment Ratio	1 14
		Percent Side Channels (%)	25
	Large Woody Debris	LWD Index No. of LWD Pieces/ 100 meters	250
	Lateral Migration	Greenline Stability Rating Dominant BEHI/NBS Percent Streambank Erosion (%) Percent Armoning (%)	VL/M 7 10
	Bed Material Characterization	Size Class Pebble Count Analyzer (p-value)	
Geomorphology	Bed Form Diversity	Pool Spacing Ratio Pool Depth Ratio Percent Riffle (%) Aggradation Ratio	3.9 2 56 1.2
	Plan Form	Sinuosity	1
	Riparian Vegetation	Riparian Width (%) Woody Vegetation Cover (%) Herbaceous Vegetation Cover (%) Percent Native Cover (%)	70 80 80
	Temperature	Daily Maximum Temperature (°C) MWAT (°C)	20
Physicochemical	Dissolved Oxygen	Dissolved Oxygen Concentration (mg/L)	7
	Nutrients	Chlorophyll a (mg/m2)	50
	Macroinvertebrates	CO MMI	40
Biology	Fish	Native Fish Species Richness (% of Expected) SGCN Absent Score Wild Trout Biomass (% Change)	65

Colorado Stream Quantification Tool and Colorado Stream Mitigation Procedures Evaluation and Comments – Technical Appendices and Supplemental Comments

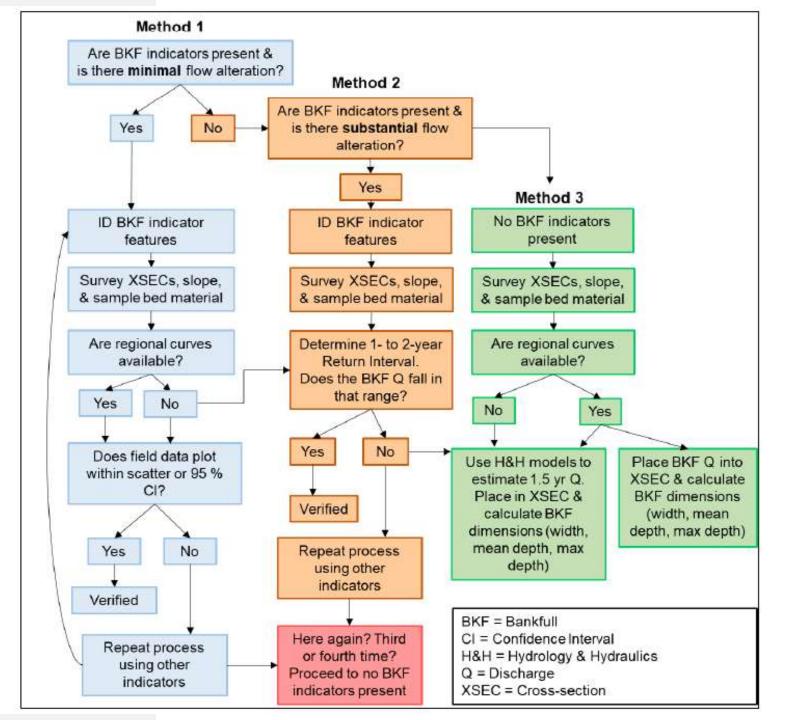
MALE HERE RECORD DESTRET MALE HERE RECORD DESTRET Destrement State Assess Face That Destrement State Assess Face That

Namenther 30, 2019

...The Mile High Flood District (Flood District) agrees that a functions-based impact and mitigation approach is needed in Colorado and that a quantification tool is an objective means to that end.

The Flood District is concerned, though, that a statewide quantification tool with a one-size-fits-all approach is challenging for practitioners to implement, may not accurately reflect lift and loss, and may result in inappropriate use as assessment and design tools.

To provide substantive, holistic, and comprehensive comments on their application state-wide and within its boundaries, the Flood District established a Flood District Task Force (Task Force) that undertook an evaluation of the COMP and CSQT.


The Task Force focused its evaluation, comments, and recommendations on the following aspects of COMP and CSQT:

- Scientific Support of Functional Categories, Parameters, and Metrics
- CSQT Data Collection and Analysis Testing Protocol
- User Manual, Workbooks, and Field Forms

COLORADO SQT

WY/CO Revision V.2

Bankfull verification flow chart with three methods for bankfull verification.

SOUTH CAROLINA SQT

SC Stream Quantification Tool

Slide David Wilson, USACE

Functional	Function-Based	Metric	EXIST	ING CONDIT	ION ASSESS	MENT
Category	Parameters	Mescie	Field Value	Index Value	Parameter	Category
Hydrology	Reach Runaff	Land Use Coefficient Concentrated Flow Points (#/1000 LF)				
HydrauRos	Floodplain Connectivity	Bank Height Ratio (ft/ft) Entreachment Ratio (ft/ft)				
	Flow Dynamics	Width/Depth Ratio State (O/E)				
	Large Woody Debris	LWD Index LWD Piece Count (#/100m)				
	Lateral Migration	Erosion Rate (ft/yr) Dominant BEHI/NRS Percent Streambank Erosion (%) Percent Streambank Amoring (%)				
Geomorphology	Riparian Vegetation	Buffer Width (ft) Average DBH (in) Tree Density (#/acre) Native Shrub Density (#/acre) Native Herbaceous Cover (%) Monoculture Area (%)				
	Bod Form Diversity	Pool Spacing Ratio (ft/ft) Pool Depth Ratin (ft/ft) Percent Riffle (%)				
	Temperature	Summer Daily Maximum ("F)				
	Bacteria	E. Coli (MPN/300 ml)				
Physicochemical	Nitrogen	Total Nitrogen (mg/L)			2	
- Association and a	Phosphorus	Total Phosphorus (mg/L)				
	Suspended Sediment	Total Suspended Solids (mg/L) Turbidity (NTU)				
STATES I	Macroinvertebratas	EPT Take Present				5
Biology	Fish	Smith Cardina Bintic Indea				

- Credit Tool
- Full Regionalized SQT
- Complete Workbooks and Guides
- Corps Add-on Guidance includes:
 - Priority Categories
 - · Protections of smaller order streams
 - incentives for watershed level protections

Function-based Parameters: Reach Data Inputs

Category notes and roll-up issues

Existing Condition Scores (ECS)

Score Range 0-1

Functional <u>Categories</u> Hydrology (2) Hydraulics (2) Geomorphology (22) Physiochemical (4) Biology (6)

Note: * Bankfull-based NCD design parameters

	EXISTING	G CONDITION ASSESSMENT			Roll Up Scoring				
Functional Category	Function-Based Parameters	Measurement Method	Field Value	Index Value	Parameter	Category	Category	ECS	ECS
Hydrology	Catchment Hydrology	Watershed Land Use Runoff Score				*	*_		
нушоюду	Reach Runoff	Stormwater Infiltration							ters, land
Hydraulics	* Floodplain Connectivity	Bank Height Ratio				*			e changed,
nyuraunes	*	Entrenchment Ratio							not used.
	Large Woody Debris *	Large Woody Debris Index					No ro	ll-up (av	veraging)
	carge woody bears	#Pieces							
		Erosion Rate (ft/yr)					Тwo р	aramet	ers rely on
	* Lateral Migration	Dominant BEHI/NBS					bankfu	ull deter	rmination.
	*	Percent Streambank Erosion (%)					Sensit	ive to d	eterminatio
		Percent Armoring (%)					and di	fficult t	o obtain in
		Left - Average Diameter at Breast Height (DBH; in)					urban	stream	s. Roll-up by
		Right - Average DBH (in)							
		Left - Buffer Width (feet)							I L
		Right - Buffer Width (feet)						1	
Geomorphology	Riparian Vegetation	Left - Tree Density (#/acre)				Twenty-two (2)			
deomorphology	Riparian vegetation	Right - Tree Density (#/acre)						eraged) into	
		Left - Native Herbaceous Cover (%)							dition score
		Right - Native Herbaceous Cover (%)					Geom	orphic	restoration
		Left - Native Shrub Cover (%)					relate	s to the	se paramet
		Right - Native Shrub Cover (%)							
	Bed Material Characterization	Size Class Pebble Count Analyzer (p-value)							1 [
	*	Pool Spacing Ratio							
	8ed Form Diversity	Pool Depth Ratio							imeters,
	*	Percent Riffle (%)							sed. If not
	*	Aggradation Ratio							0 and de-
	Plan Form	Sinuosity					weigh	ts othe	r category
	Bacteria	E. Coli (Cfu/100 mL)					score	s per th	e total scor
Physicochemical	Organic Enrichment	Percent Nutrient Tolerant Macroinvertebrates (%)				*			L L
rnysicochennicar	Nitrogen	Nitrate-Nitrite (mg/L)						<u> </u>	
	Phosphorus	Total Phosphorus (mg/L)						5) parar	
		Tennessee Macroinvertebrate Index							sed. If not
	Macroinvertebrates	Percent Clingers (%)							0 and de-
Biology	Macromvertebrates	Percent EPT - Cheumatopsyche (%)				* -			er category
BIOIOSY		Percent Oligochaeta and Chironomidae (%)					score	es per tl	ne total sco
	Fish	Native Fish Score Index							
	11511	Catch per Unit Effort Score							

Selected Findings by the TC Working Group Members:

- <u>Flexibility in assessment protocols</u>; one SQT protocol cannot quantify all possible conditions and stream restoration strategies.
- <u>More complex than needed</u>, make simpler and cost effective, and improve on assessing/scoring functional lift of physical, chemical, and biological attributes.
- Parameters dictate design methodology, in general, parameters used for single-threaded channel restoration using Natural Channel Design – limits credit generation for multithreat channels, urban stream restoration, headwater streams, and unique conditions in different ecoregions.
- Reference (performance) curves not adequate across state ecoregions: regionalization.
- Existing condition scores for <u>debiting</u> (small reaches) \neq crediting (large reaches).
- <u>Bankfull (BF) estimate</u>, difficult to determine in highly alternated channels, i.e., urban watersheds and channelized streams. BF requires riffle structure and may be absent in some channel conditions. Non-stationary in urban streams.
- <u>Physical habitat</u> not assessed directly, but noted as a key category for function-based metrics to assess stream functional condition.

Some TC Concluding Remarks:

- <u>Reassessment of the Stream Assessment Framework</u> for compensatory mitigation needs to focus on <u>ecosystem function</u> rather than metrics used in a geomorphic restoration design methodology. And include valley/ floodplain dynamics.
- <u>SQT Metrics</u> should be process-based so they are applicable across multiple ecoregions and watershed stressor conditions.
- Alternatives to bankfull methods are needed in defined conditions
- <u>Physical Habitat and Riparian Corridor Quality</u> should be functional categories to quantify ecosystem processes.
- <u>Further Study</u> more science on quantifying ecological response from stream restoration to formalize an effective assessment framework for stream function and to provide greater certainty in mitigation crediting.

TN SQT REVIEW :: WORKING GROUP

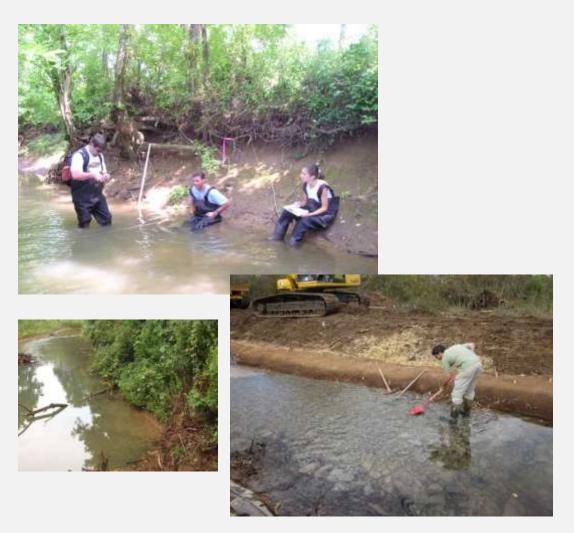
Original Working Group Members:

PROFESSIONAL COMMUNITY

John S. Schwartz, University of Tennessee, Knoxville David Blackwood, West Tennessee River Basin Authority Matt Clabaugh, Barge Design Solutions, Inc. Cat Hoy /Chris Fleming, BDY Environmental led Grubbs, Cumberland River Compact Casey Hertwig / Daniel Spradlin, CEC Brady McPherson / Will Stanley, Stantec Josh Sitz, KCI Chris Todd, Envirogreen, Inc. Angel Fowler, RES Shawn Wurst, RES/TDOT

REGULTORY COMMUNITY

Jonathon Burr, TDEC Jimmy Smith, TDEC Adam Kelly, TDEC Claire Wainwright, TDEC Ryan Evans, ACOE Nashville District Joshua Frost, ACOE Nashville District Will Worrell, ACOE Nashville District Damon McDermott, ACOE Memphis District


Review group initiated by **TDEC** after approximately one year of SQT being in effect and professional community has identified issues. Working Group formed in August 2020.

Review Objectives:

- 1. Compile and summarize issues from working group members associated with the existing TN SQT individual metric scorings and the total existing condition scores (ECS) used for compensatory stream mitigation debits and credits.
- 2. Provide suggestions for a revised TN SQT that better measure stream functional attributes for a boarder range of stream types (East to West Tennessee).
- 3. Ensure that any revisions work for both debiting and crediting, and the basic currency does not change.

TN Healthy Watersheds Initiative Study: Restoration Potential from Urban Streams

Valley & Ridge Study Results: TN SQT Existing Condition Scores

ECS	Urban Impaired		Urban Restored		Ecoregion Reference		
	Baker Cr.	0.47	Williams Cr.	0.52	Mill Run	0.69	
	Beaver Cr.	0.58	Beaver Cr.	0.59	Indian Cr.	0.70	
	Friar Br.	0.58	Friar Br.	0.53	Dry Cr.	0.70	
	Third Cr.	0.42	Third Cr.	0.56	Big War Cr.	0.75	
Avg.	0.53		0.55		0.71		

Restored streams: Post-period > 7 years

- > Ecoregion reference streams: Average ECS = 0.71 (functioning, *barely*)
- Urban and urban restored streams similar in ECS :: Functioning-at-Risk
- Minimal functional lift between urban and urban restored streams; however urban restored streams were observed with greater biotic integrity (TMI & Fish IBI) scores than urban impaired.
- Beaver Creek restored now with a TMI = 32 (supporting) from a pre-restoration TMI = 23-29; and an estimated pre-restoration SQT = 0.51 compared to a post-construction SQT = 0.59.

Addressing the Roll-up Weighting of the Total Existing Condition Score

Existing Functional <u>Categories</u> Hydrology (2) Hydraulics (2) Geomorphology (22) Physiochemical (4) Biology (6)

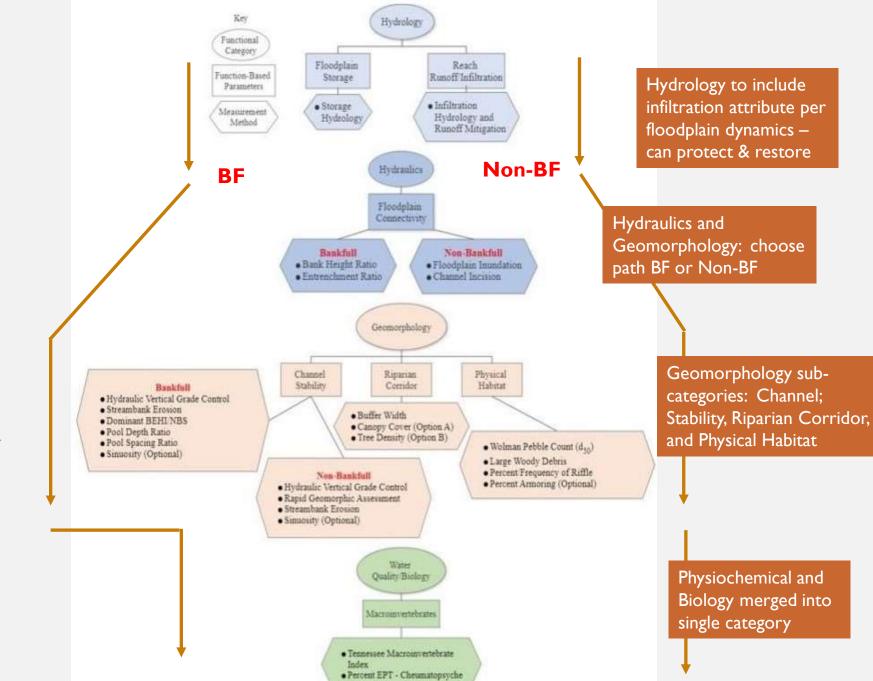
- Suggested to adjust the number of metrics per category
- Suggested that about 2-4 required metrics per category would reduce weighting issue.
- Allow various optional metrics per category for project site conditions when appropriate meeting objectives.
- A proposed arrangement of categories is as follow:
 - Hydrology
 - Hydraulics
 - Geomorphology: Channel Stability
 - Geomorphology: Physical Habitat
 - Geomorphology: Riparian Corridor
 - Water Quality/Biology *

TN SQT V.2 TEST

Function-based Parameters:

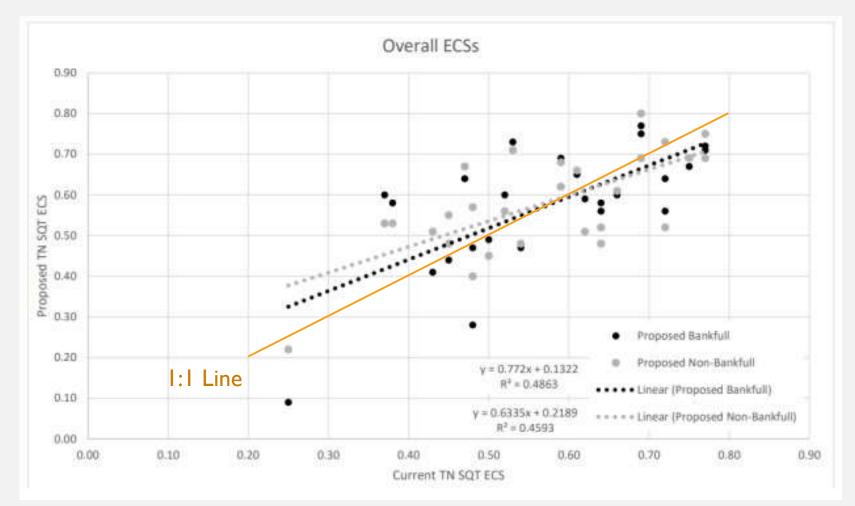
Proposed Revision

TN SQT Structural Assessment Scheme:


- Hydrology
- Hydraulics
- Geomorphology: Channel Stability
- Geomorphology: Physical Habitat
- Geomorphology: Riparian Corridor
- Water Quality/Biology

paths, 2-3 required

Whether BF or Non-BF


parameters per category

with optional parameters.

TN SQT REVIEW WORKING GROUP

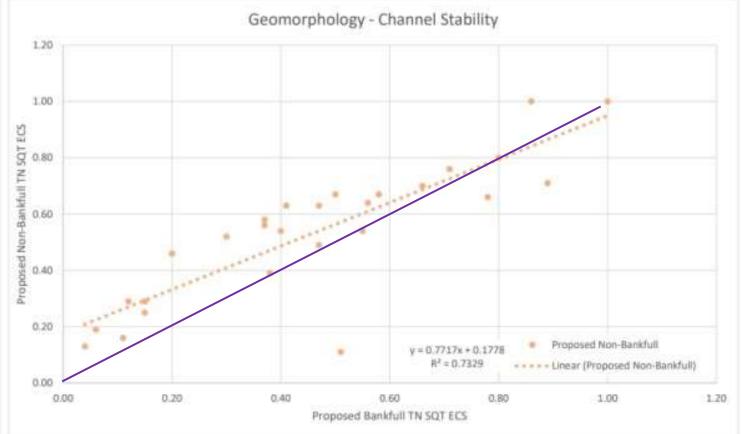
Comparing Current Version with Proposed Revised Version

Results:

Data variable $R^2 = 0.46-0.47$ but significant trend (p < 0.05)

Suggests migration credit currency is not altered significantly overall.

Individual site existing condition scores (ECSs) will vary and partially dependent on BF estimates.


TN SQT REVIEW WORKING GROUP

Comparing Proposed Revised Version: Geomorphology Category Bankfull to Non-Bankfull

In General,

Non-bankfull scores slightly higher than bankfull scores.

Both correlated with $R^2 = 0.73$, and significant (p < 0.05).

Functional Category	Parameter	Metric	Selection Guide	Index Value	Parameter Score	Category Score	
	Catchment Hydrology	Watershed LUR score	always	0.067	0.067		
Hydrology	Reach Runoff	Stormwater Infiltration	always	0.067	0.067	0.2	
	Floodplain Storage	Infiltration Potential	always	0.067	0.067		
		Bank-Height Ratio	bankfull available	0.1			
		Entrenchment Ratio	bankfull available	0.1	0.2		
Hydraulics	Floodplain Connectivity	Aggradation Ratio	bankfull available (option	(0.067)		0.2	
		Floodplain Inundation Freq	bankfull not available	0.1	0.2		Depterull on
	2	Channel Incision (shear stress ratio)	bankfull not available	0.1	0.2		Bankfull or
	Large Woody Debris	Large Woody Debris (LWD)	always	0.1	0.1		Non-Bankfull
	. r	Buffer Width	always	0.025			
Geomorphology I	Dispripe Corridor	Canopy Cover	always	0.025	0.1	0.2	
	Riparian Corridor	% Invasive Woody Species	always	0.025	0.1		
		Average DBH	always	0.025	6		
		% Streambank Erosion	always	0.033	0.1		
	Channel Stability	% Streambank Armoring	always	0.033			
		Rapid Geomorphic Assessment	always	0.033			
Geomorphology II		Wolman Pebble Count	always	0.025 (bf), 0.033 (nbf)		0.2	
	Divergent Machine	% Riffle	always	0.025 (bf), 0.033 (nbf)	0.1		Non-Bankfull
	Physical Habitat	Pool-Pool Spacing Ratio	always (alt NBF method)	0.025 (bf), 0.033 (nbf)	0.1		
	2	Pool Depth Ratio	bankfull available	0.025			Alternative
		Tennessee Macroinvertebrate Index	always, unless TMI submetrics option chosen	0.2 or 0.1			
	Biology	% Clingers			0.2 or 0.1		
		% EPT - Chuematopsyche	TMI submetrics option	0.2 or 0.1			
Biology / Water Quality		% Oligo. & Chironom.				0.2	
	6	% Nutrient Tolerant macro	Î.		A		
		Mean Nitrate-Nitrite					
	Water Quality	Mean Total Phosphorous	WQ option		0.1		
		Geomean E. coli					

Functional Category	Sub-Category / Parameter	Functional Attribute / Functional Statement
Hydrology	 Catchment Hydrology Reach Runoff / Stormwater Infiltration Floodplain Storage 	 Watershed scale runoff based on land cover/land use Enhanced infiltration of surface runoff & WQ improvements Promote infiltration on floodplains, side- channel/wetlands restoration; area-based
Hydraulics	 <u>Floodplain Connectivity</u> Bank Height Ratio Entrenchment Ratio <u>Floodplain Inundation</u> <u>Channel Incision</u> Aggregation Ratio 	 BF measures of floodplain inundation and channel incision. NBF measures of floodplain inundation and channel incision. Excessive sediment deposition, habitat quality (optional).

Functional Category	Sub-Category / Parameter	Functional Attribute / Functional Statement
Geomorphology I	 Large Woody Debris <u>Riparian Corridor</u> Buffer Width <u>Canopy Cover</u> Average DBH <u>% Invasive Woody Sp.</u> 	 Provides channel structure associated with habitat quality Provides channel structural stability and shape for water temperature Limits vegetation diversity.
Geomorphology II	 <u>Channel Stability</u> % Streambank Erosion (modified) Rapid Geomorphic Assessment % Streambank Armoring 	 Fluvial erosion; Channel stability per degree of channel adjustment both vertical and lateral erosion. A measure of streambank habitat quality.

Functional Category	Sub-Category / Parameter	Functional Attribute / Functional Statement
Geomorphology II	 <u>Physical Habitat</u> Wolman Pebble Count % Riffle Pool Spacing Ratio Pool Depth Ratio 	 Sediment supply/transport and bed sediment for habitat quality Mesohabitat quality for pool habitat units. Pool spacing has a non-bankfull methodology.
Biology / Water Quality	 <u>Biology</u> TMI % Clingers, % EPT – Chuemato., % Oligo. & Chironom. <u>Water Quality</u> % Nutrient Tolerant MI, NO3-+NO2-, TP <i>E. coli</i> 	 A measure of biotic integrity and water quality impairment A TMI indicator for excessive nutrients, and direct chemical measure. A measure of fecal pollution.

TN SQT V.2

Questions

Discussion

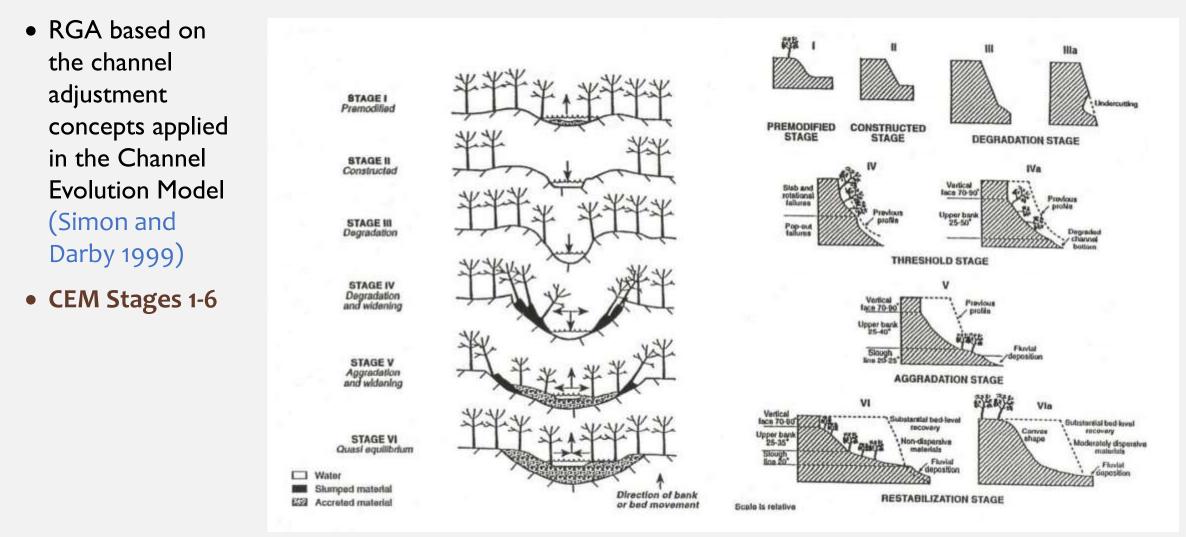
Baltimore, Maryland August 22, 2023

TN SQT V.2: CHANNEL STABILITY

Geomorphology Category: USDA Rapid Geomorphic Assessment

(USDA NSL, Simon, 1996, 1998, 2004)

Consists of nine sub-metrics Each sub metric: 0 to 4 Total Score: 0 to 36


Stable TS = or < 11 Conditional Stable 11 to < 19 Unstable > 19

Many published works, and USDA data available in in most US ecoregions.

1. Prin	nary bed	material					Braided
	Bedrock	Boulder/	Cobble	Gravel	Sand	Silt Clay	
	0	1		2	3	4	
2. Bed	bank pro	tection					
	Yes	No	(with)	1 bank	2 banks		
				protected			
	0	1		2	3		
3. Deg				on of "normal" lov		odplain/terr	ace @ 100%)
	0-10%	11-25%	26-50%	51-75%	76-100%		
	4	3	2	1	0 .		
4. Deg				crease in top-bank		up to down	stream)
	0-10%	11-25%	26-50%	51-75%	76-100%		
	0	1	2	3	4		
5. Stre	am bank	erosion (Ea					
	None	Fluvial	Mass wast	ing (failures)			
Left	0	1	2				
Right	0	1	2				
6. Stre		Comparison (Comparison (Comparison))		f each bank failing)			
	0-10%	11-25%	26-50%	51-75%	76-100%		
Left	0	0.5	1	1.5	2		
Right	0	0.5	1	1.5	2		
7. Esta	blished ri			tive cover (Each ba			
	0-10%	11-25%	26-50%	51-75%	76-100%		
Left	2	1.5	1	0.5	0		
Right	2	1.5	1	0.5	0		
8. Occ				cent of each bank v		deposition)	
	0-10%	11-25%	26-50%	51-75%	76-100%		
Left	2	1.5	1	0.5	0		
Right	2	1.5	1	0.5	0		
9. Stag	e of chan	nel evoluti	on				
	I	п	III	IV	V	VI	
	0	1	2	4	3	1.5	

TN SQT V.2: CHANNEL STABILITY

Geomorphology Category: USDA Rapid Geomorphic Assessment

TN SQT V.2: CHANNEL STABILITY

Channel Evolution Model

(USDA NSL, Simon, 1998, 2004)

USDA Scale 0 to 4

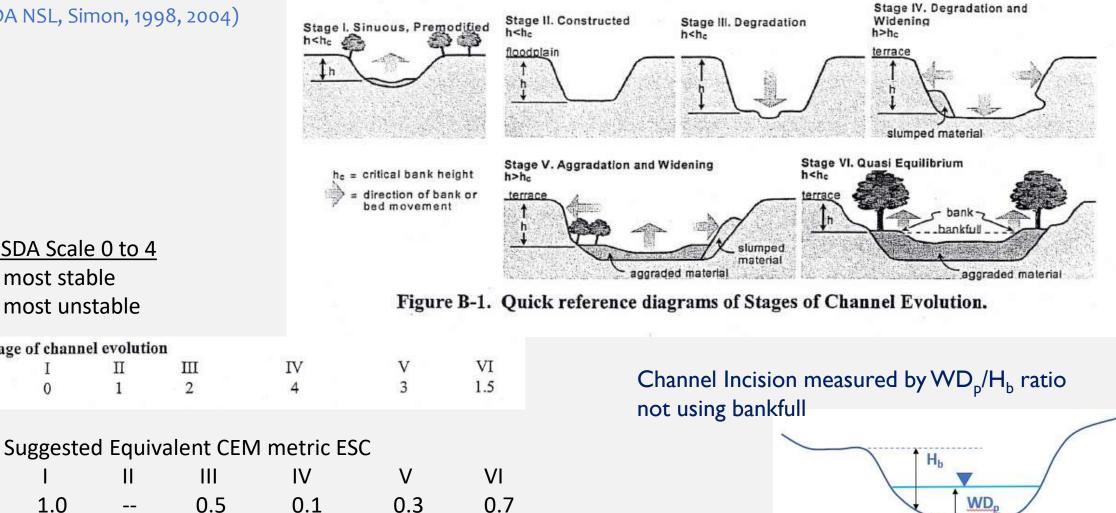
0 most stable

0

1.0

4 most unstable

Stage of channel evolution


II

1

Ш

Ш

2

Bankfull Indicators

Bankfull Discharge: Multiple hydrogeomorphic indictors

NRCS: Part 654 Nat'l Engr. Handbook (2007) Table 5.1

Reference	
Wolman (1955) Pickup and Warner (1976)	
Wolman and Leopold (1957)	
Woodyer (1968)	
Wolman (1955)	
Leopold and Skibitzke (1967)	
Schumm (1960); Bray (1972)	
Wolman and Leopold (1957) Nixon (1959)	
Schumm (1960)	
Leopold (1994)	
Rosgen (1994)	
	Wolman (1955) Pickup and Warner (1976) Wolman and Leopold (1957) Woodyer (1968) Wolman (1955) Leopold and Skibitzke (1967) Schumm (1960); Bray (1972) Wolman and Leopold (1957) Nixon (1959) Schumm (1960) Leopold (1994)

Identifying Bankfull Indicators

TN SQT User's Manual

Tips for Identifying the Bankfull Feature:

- Look for depositional features such as point bars. Bankfull is often the highest elevation or top of point bar.
- Check the bank for a break between depositional processes and channel formation processes such as a slope break.
- 3. For incised channels with a developing floodplain, bankfull is typically the back of a sloping bench. The front of the bench is typically the inner berm.
- 4. Scour lines should only be used to reinforce indicators from depositional features.

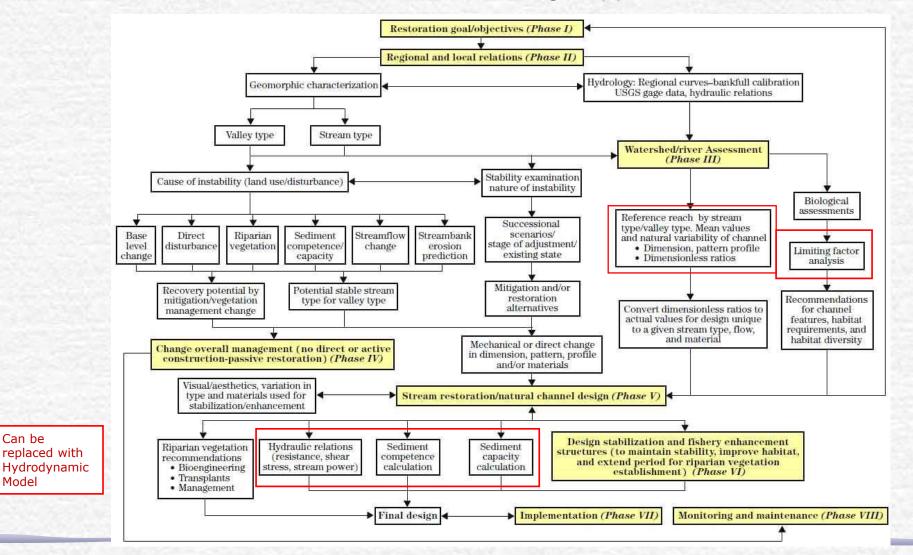
Notes:

Scour line identification has been termed Active Channel Width Use regional curves to check field measurements

Bankfull Indicators Limitations

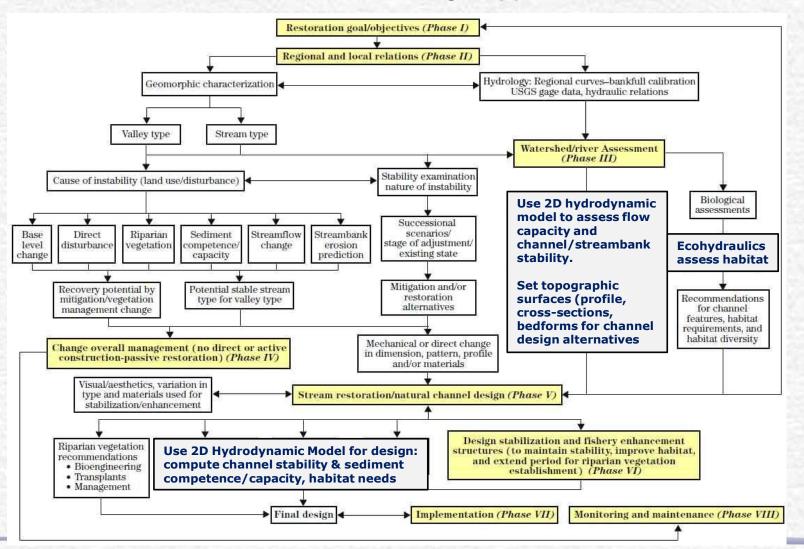
Summary of stream conditions that affect bankfull indices

Table 3. Summary of stream conditions that affect bankfull indices as Table 5-11 in the NRCS2007 National Engineering Handbook, Part 654.


Table 5-11

Evaluate

Urban Streams Bedrock Channels Engineered Channels


Reach condition	Process	Effect on bankfull indices	
Threshold	Sediment transport capacity of the reach exceeds the sediment supply, but the channel grade is stable	Bankfull indices may be relics of extreme flood events, and may indicate a bankfull flow that is too high	
Degrading	The sediment transport capacity of the reach exceeds the sediment supply to the reach, and the channel grade is lowering	The former flood plain is in the process of becoming a terrace. As a result, bankfull indices may indicate a flow that is too high	
Aggrading	The sediment transport capacity of the reach is less than the sediment supply	The existing flood plain or in chan- nel deposits may indicate a flow that is too low	
Recently experi- enced a large flow event	Erosion and/or deposition may have occurred on the bed and banks	Bankfull indices may be missing or may reflect the large flow event	
Channelized	Sediment transport capacity may not be in balance with sediment supply. The channel may be aggrad- ing or degrading. The reach may be functioning as a threshold channel	Bankfull indices may be relics of previous channel, artifacts of the construction effort, embryonic, or missing altogether	

Natural Channel Design Approach

NRSC Part 654 NEH (2007), Ch. 11 Rosgen Geomorphic Channel Design

Natural Channel Design Approach

