CAT BRANCH STREAM/VALLEY RESTORATION, SWM POND RETROFIT, AND OUTFALL RETROFIT

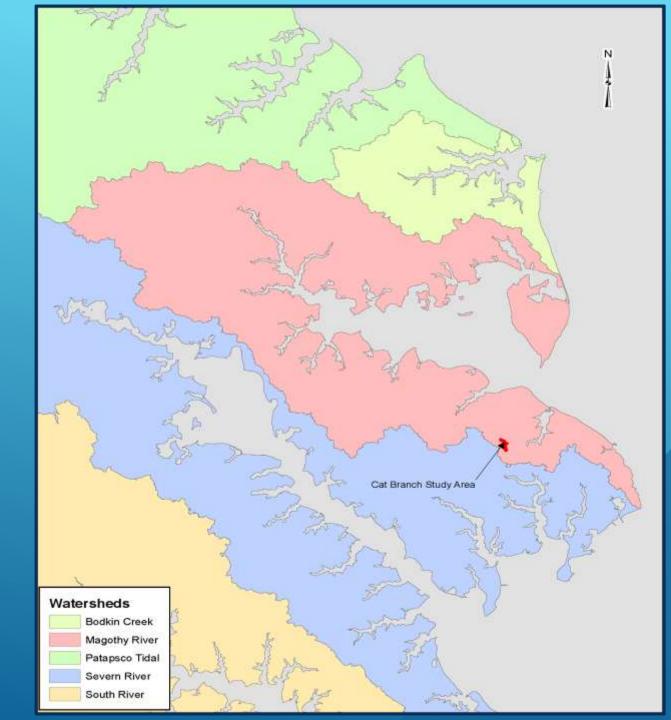
National Stream Restoration Conference Session B: Headwaters and Floodplain Reconnection August 22, 2023

> BayLand Consultants & Designers, Inc. Sean Crawford, PE Caitlin Sporik, PE

PROJECT BACKGROUND

- Anne Arundel County Bureau of Watershed Protection and Restoration CIP
- Site identified during 2010 comprehensive assessment of Magothy River Watershed
- Project included:
 - > 1,490 LF of stream restoration
 - > 3.5 acres non-tidal wetland restoration
 - > Upland BMP retrofit (SWM infiltration facility)
 - > Three outfall retrofits (SWM wetland and rock sill)
- > 200 LF of the project was completed in 2018 as part of an emergency repair for an exposed sanitary sewer line

Anne Arundel County Bureau of Watershed Protection & Restoration


PROJECT GOALS

- Provide stream valley restoration, including the establishment or reconnection with riparian wetlands and optimizing floodplain reconnection volume.
 - Maximize surface-groundwater exchange
 - Promote sediment and nutrient trapping
- Provide design features that promote denitrification during base flow.
- Provide significant reduction in annual mass of sediment and attached nutrients originating from on-site channel degradation (i.e. "Prevented Sediment") and upstream loss being delivered to downstream receiving waters.
- Enhance stream and riparian ecological functions.
- Provide an integrated stabilization approach to storm drain outfalls.
- Document water quality (and/or other) credit towards Anne Arundel County's NPDES MS4 permit watershed restoration requirement, and assist in meeting Anne Arundel County's WLA towards the Chesapeake Bay TMDL.

PROJECT LOCATION

Magothy River Watershed

- > 35.6 square miles
- Mix of urban residential, commercial, and forested land use
- Part of the Chesapeake Bay TMDL to address Nitrogen, Phosphorus and Sediment

PROJECT LOCATION

Cat Branch Sub-Watershed

- > 285 acres/0.4 square miles
- > 24% Impervious Area
- Primarily Medium Density Residential and Institutional Land Use

EXISTING CONDITIONS – BMP 110

EXISTING CONDITIONS – EXPOSED SS AND UPSTREAM HEADCUTS

EXISTING CONDITIONS – PROJECT REACHES

EXISTING CONDITIONS – PROJECT REACHES

EXISTING CONDITIONS

Bankfull Channel Dimensions at Classification Riffles					
Bankfull Channel Dimension Parameter	R-1	R-2	R-3	R-4	
Drainage Area (mi²)	0.41	0.41	0.44	0.44	
Bankfull Discharge (cfs)	16.3	16.3	17.3	17.3	
Cross Sectional Area (A _{bkf}) (ft ²)	6.1	6.6	5.0	3.8	
Bank Height Ratio	3.7	2.6	3.7	3.5	
Bankfull Width (W _{bkf}) (ft)	9.8	6.6	7.6	4.7	
Mean Depth (d _{bkf}) (ft)	0.6	1.0	0.7	0.8	
Width to Depth Ratio (W _{bkf} /d _{bkf})	15.6	6.7	11.5	5.8	
Width of Flood-prone Area (W _{fpa}) (ft)	9.5	5.1	8.2	4.9	
Entrenchment Ratio (ER)	1.0	0.8	1.1	1.0	
Median Material Size (D ₅₀) (mm)	0.120	0.091	0.098	0.068	
Channel Sinuosity (K)	1.11	1.11	1.10	1.15	
Rosgen Stream Classification	F5	G5c	G5c	G5c	
Valley Slope (S _v) (ft/ft)	0.022	0.007	0.007	0.011	

EXISTING CONDITIONS

- 2016 Monitoring
 - BIBI Score = 2.43/poor
 - RBP = 112/partially supporting
 - PHI = 65.48/degraded

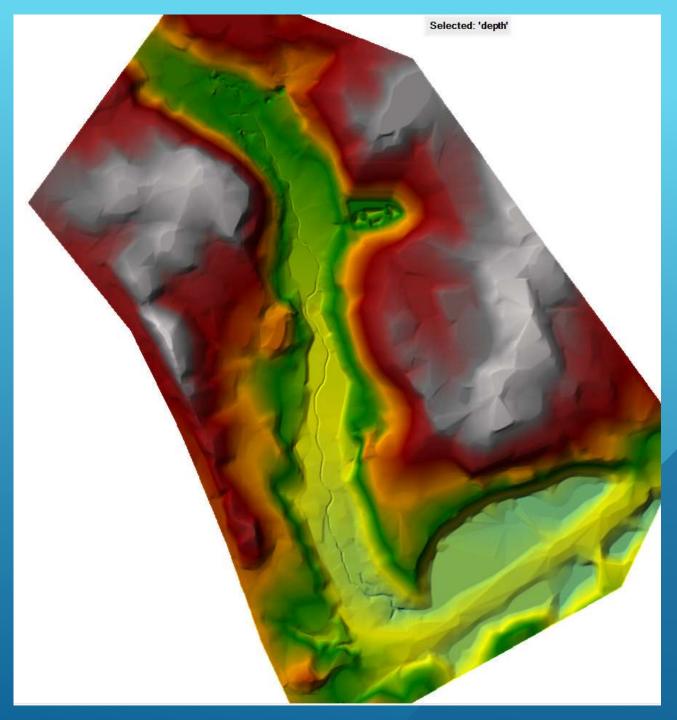
Peak Discharges (cfs)							1000
1-year	2-year	5-year	10-year	25-year	50-year	100-year	K. Y
17.2	41.7	98.4	157.4	251.8	335.5	427.5	

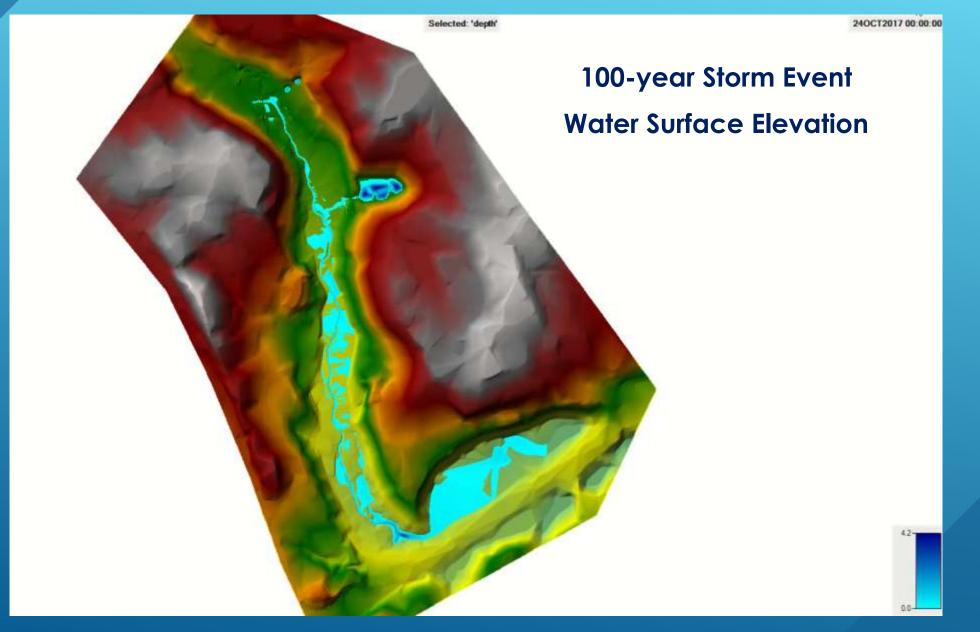
RESTORATION APPROACH

Watershed Wide Approach

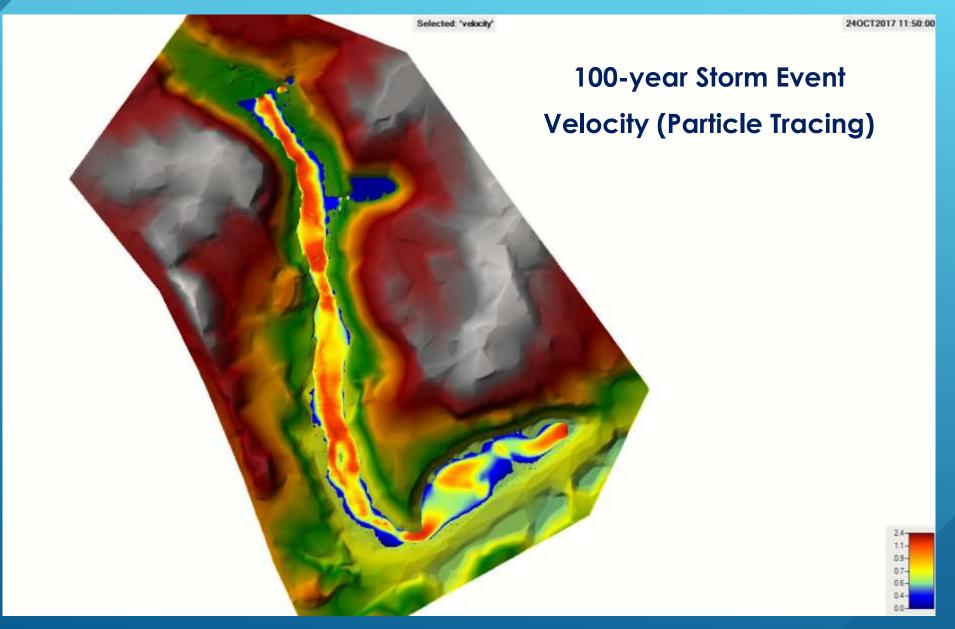
- Conversion of a dry detention pond to an infiltration basin.
- Installation of a SWM wetland downstream of two storm drain outfalls.

Valley Restoration with Base Flow Channel


- Combination of raising the elevation of the incised stream bed + legacy sediment removal.
 - Increased runoff volume diverted onto the floodplain during storm events.
- Installed in-stream and valley wide treatments including log-cobble riffles, valley wide grade controls (log and rock), clay groundwater dams.
- Restored 200 LF of valley upstream of the project area without any disturbance.
 - Installed a clay groundwater dam that raised the upstream water table and restored wetland hydrology.
- Reused trees removed on site to provide grade control, increase floodplain roughness and provide habitat.
- **Establish a functional**, diverse riparian zone.


HYDRAULIC MODELING

Two dimensional (2D) unsteady flow modeling conducted to:


- Evaluate complex channel/floodplain interactions
- Determine near-field detail flood patterns
- Support restoration design

HYDRAULIC MODELING

HYDRAULIC MODELING

CONSTRUCTION

- Anne Arundel County On-Call Contractor
- Sewer line emergency repair work completed Fall 2018
- **BMP 110 retrofit completed Spring 2019**
- Stream restoration/SWM wetland completed Fall 2019

SEWER LINE EMERGENCY REPAIR- FALL 2018

STREAM – FALL 2019

STREAM – FALL 2019

POST-PROJECT CONDITIONS

SEWER LINE REPAIR – PRE AND POST CONSTRUCTION

SWM WETLAND AND BMP 110 – POST CONSTRUCTION

STREAM-POST CONSTRUCTION

BIOLOGICAL MONITORING

Year	BIBI	FIBI	RBP
2016	2.43 (P)		112 (PS)
2020	1.86 (VP)		93 (NS)
2021	1.57 (VP)		134 (NS)
2022	2.43 (P)	3.00 (F)	151 (C)
2023	TBD	TBD	TBD

WATER QUALITY CREDITS

	TN (lbs/yr)	TP (lbs/yr)	TSS (tons/yr)	WQv (%)	IA (acres)
Stream Restoration	621.0	48.5	38.2	NA	65.0
SWM Wetland	41.8	4.3	1.2	66	2.4
Infiltration Basin	157.6	9.9	2.7	100	3.8
Total	820.4	62.7	42.1		71.2

WETLAND CREATION

	Pre-Restoration (acres)	Post Restoration (acres)	Change (acres)	Change (%)
LOD	0.61	2.05	1.44	338
Valley	1.21	2.78	1.57	231

CHESAPEAKE BAY MEDIA, BEAVER DAM

https://chesapeakebaymagazine.com/video-beavers-heron-mark-stream-restoration-success-in-magothy-watershed/

CHALLENGES/LESSONS LEARNED

Groundwater Table

- Management of groundwater during construction
 - Include additional dewatering provisions in cost estimate when high water table expected
- Double layered matting used for access in some locations

Stabilization

- Rough grading floodplain & properly anchoring soil stabilization matting is difficult
- Wood chips/mulch for stabilization buoyant when valley is inundated

Base Flow Channel

Smaller, more sinuous

ACKNOWLEDGEMENTS

Anne Arundel County Bureau of Watershed Protection and Restoration

- Erik Michelsen
- Jens Geratz
- Nasrin Dahlgren

PayDirt, LLC

QUESTIONS