

IMPLEMENTING VERNAL POOLS IN MID-ATLANTIC STREAM RESTORATION PROJECTS

Presented By:

Ethan Daviau

Contributions From:

Dennis Genito - Baltimore County Department of Environmental Protection and Sustainability

August 22, 2023

Overview

- About Vernal Pools
- Why Vernal Pools
- Project Background & Objectives
- Vernal Pool Design
- Monitoring Methods
- Macro-Invertebrate Sampling & Colonization
- Mosquitos
- Lessons Learned

What are Vernal Pools?

- Vernal pools are seasonal depressional wetlands
- Wet for variable periods of time and may be dry throughout the summer and fall
- May contain rare species because of unique conditions

Why Vernal Pools?

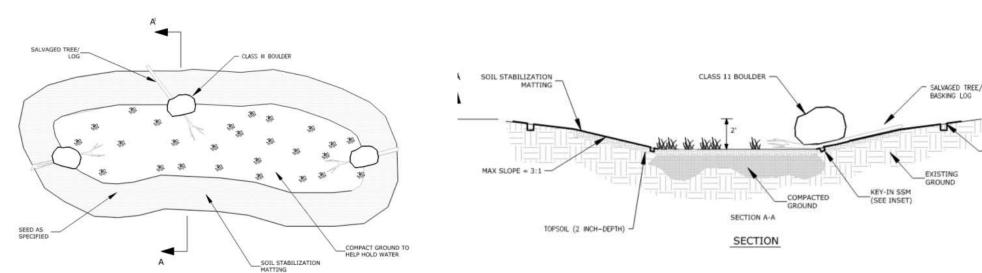
- Floodplain storage
- Added habitat and species diversity (both aquatic and terrestrial)
- Groundwater infiltration and hyporheic exchange
- Natural water treatment
- Cost effective wetland creation

Project Background and **Objectives**

Cooper Branch – Baltimore County, MD

- Construction completed 2019
- Confined urban stream valley
- 3 reaches restored to B4 stream type
- Monitored for 3 years per USACE Permit
- 4 constructed vernal pools

Cedar Branch – Baltimore County, MD


- Construction completed 2020
- Confined urban stream valley
- 5 reaches restored to C4 & B4 stream types
- Monitored for 3 years per USACE Permit
- 6 constructed vernal pools

Vernal Pool Design

- Vernal pools excavated during demobilization of the haul road
- SSM, topsoil, seed, logs and boulders were added
- Assumed wetting from precipitation, overland flow, and overbank flow events
- Boulders and logs for aquatic and terrestrial habitat

PLAN VIEW

KEY-IN SSM

Monitoring Methods

- Both projects monitored quarterly for 3 years for USACE permit requirements
- Maryland Biological Stream Survey (MBSS) Vernal Pool Habitat Assessment Form
- Baltimore County DEPS Conducted
 Macroinvertebrate Sampling in Vernal Pools
 - Cedar Branch 2016, May 2020 April 2021
 - Cooper Branch July 2019 April 2021

Design and Monitoring Observations

- Cedar Branch VP-6 never held water
- Cooper Branch VP-4 only held water during one visit
- Vernal pools received water through precipitation and overland flow
- MBSS Vernal Pool Datasheet

Cooper Branch VP-4 6/5/20

Snapping turtle and tadpoles in Cooper Branch vernal pool

MBSS Vernal Pool Data Sheets

- MBSS Vernal Pool Data Sheets used
- Primarily observational
- Recorded dimensions
- Water depth
- Visual observations of inhabitants
- Comments section for other notes

Within Transect? (Y/N): Lat	2 0 2 2 Long Long	
Vernal Pool ID: Dimensions: Max Depth: Landscape Setting: Fish Observed? (Y/N): N Anostraca Observed? (Y/N): N Distance From Pool	Observed Lifestage Species Adult Larva Eg Damselfly (Zygoptera) Snail (Gastropoda)	RPETOFAUNA Seen Heard # Phot Take X
	t, cattails, sedges, and abundant with life.	Voucher (Y/N)

Macroinvertebrate Sampling Methods

- General Approach by Baltimore County Department of Environmental Protection and Sustainability (DEPS)
 - Sample post construction benthos in restored channel and vernal pools
 - Macroinvertebrates were sampled, preserved, and identified in the lab
 - External taxonomist verification of species ID
 - 10 sq. ft sampling areas were used beginning in 2020
 - Species ID, density, diversity, and behavior were considered
 - Do restored channels and riparian zones increase mosquito populations and carry disease to nearby residents?

Macroinvertebrate Sampling Cooper Branch

- VP-3 was dry during 2019 sampling
- VP-4 only held water during 4/1/20 visit and was not sampled

2019 YR1

2020 YR2

2021 YR3

VP-1 sampled 7/15 & 8/26
VP-2 sampled 5/31 & 8/26

Vernal pools 1-3 sampled
4/14, 6/3, and 8/20

Vernal Pools 1-3 sampled
4/19

Macroinvertebrate Results and Colonization

Cooper Branch

- Expect abundance and species diversity increase, then stabilize over time
- Colonization began < 2 months from construction in 2019
- In 2020, VP-1 had a population of callibaetis mayflies, a still/slow water species
- Predator species exist in significant numbers
- Midges, craneflies, true bugs, damselflies, dragonflies, snails, beetles, and worms were collected in all pools

Cooper VP-1	7/15/2019	8/26/2019	4/14/2020	6/3/2020	8/20/2020	4/19/2021
Total abundance	6	15	55	53	80	60
Abundance/sq.ft.	N/A	N/A	5.5	5.3	8.0	6.0
No. of distinct taxa	4	9	7	6	15	16
% Chironomidae	0	7	0	2	20	5
% Predator	33	40	27	8	21	33

Cooper VP-2	5/31/2019	8/26/2019	4/14/2020	6/3/2020	8/20/2020	4/19/2021
Total abundance	1492	16	61	72	67	84
Abundance/sq.ft.	N/A	N/A	6.1	7.2	6.7	8.4
No. of distinct taxa	8	7	4	10	8	12
% Chironomidae	0	6	0	18	1	11
% Predator	0	38	13	21	7	24

Cooper VP-3	NO SAMPLE (DRY)		4/14/2020	6/3/2020	8/20/2020	4/19/2021
Total abundance			15	113	139	72
Abundance/sq.ft.			1.5	11.3	13.9	7.2
No. of distinct taxa			4	14	14	9
% Chironomidae			0	6	5	31
% Predator			13	12	14	14

MosquitosCooper Branch

- Field observations noted far fewer mosquitos present in 2020 than 2019
- Invertebrate species diversity increased beginning in 2019
- Three container species were identified but comprised less than 10% of each subsample except the first sample (4/14/2020) in VP-3.
- Cx. Territans only feeds on amphibians and requires good water quality
- Aedes albopictus (Asian tiger mosquito), the most common urban pest, was absent in all samples.

Macroinvertebrate Sampling Results

Cedar Branch

VP-6 never held water and was excluded from sampling

2016 PreCon

2020 YR1

2021 YR2

Reach 5 pool sampled for mosquito larval density

All vernal pools and Reach 5 sampled 5/1, 6/4, and 11/5

All vernal pools and Reach 5 sampled 4/27

Macroinvertebrate Results and Colonization

Cedar Branch

Cedar VP-1	5/1/2020	6/4/2020	11/5/2020	4/27/2021
Total abundance	27	412	56	87
Abundance/sq.ft.	2.7	41.2	5.6	8.7
No. of distinct taxa	5	9	9	11
% Chironomidae	15	48	4	2
% Predator	0	0	46	29

Cedar VP-2	5/1/2020	6/4/2020	11/5/2020	4/27/2021
Total abundance	186	186 1440		85
Abundance/sq.ft.	18.6	144 6.7		8.5
No. of distinct taxa	4	11	9	8
% Chironomidae	78	19	4	14
% Predator	1	0	9	8

Cedar VP-3	5/1/2020	DRY	11/5/2020	4/27/2021
Total abundance	14		2	84
Abundance/sq.ft.	1.4		0.2	8.4
No. of distinct taxa	3		2	2
% Chironomidae	0		0	2
% Predator	0		50	0

Cedar VP-4	5/1/2020	DRY	11/5/2020	4/27/2021
Total abundance	9		11	29
Abundance/sq.ft.	0.9		1.1	2.9
No. of distinct taxa	4		6	6
% Chironomidae	56		0	14
% Predator	11		9	34

Cedar VP-5	5/1/2020	NO SAMPLE (DRY)		4/27/2021
Total abundance	178			47
Abundance/sq.ft.	17.8			4.7
No. of distinct taxa	5			6
% Chironomidae	6			2
% Predator	0			0

Cedar Reach 5	9/16/2016	5/1/2020	6/4/2020	11/5/2020	4/27/2021
Total abundance	254	36	418	11	87
Abundance/sq.ft.	6.0	3.6	41.8	1.1	8.7
No. of distinct taxa	4	4	7	6	9
% Chironomidae	0	92	69	9	46
% Predator	0	0	0	82	2

Macroinvertebrate Results and Colonization | Cedar Branch

- Chironomidae were initial colonizers
- Chironomidae tend to decrease as predators increase
- The vernal pool community was more diverse than the stream channel
- Consisted of mayflies, damselflies, dragonflies, non-biting midges, phantom midges, water beetles, snails, true bugs, moth flies, leeches, and worms
- Vernal pool samples differed from the stream channel and from each other
- VP-1 and VP-2 were most diverse, held water during all sampling events, and included mayfly populations

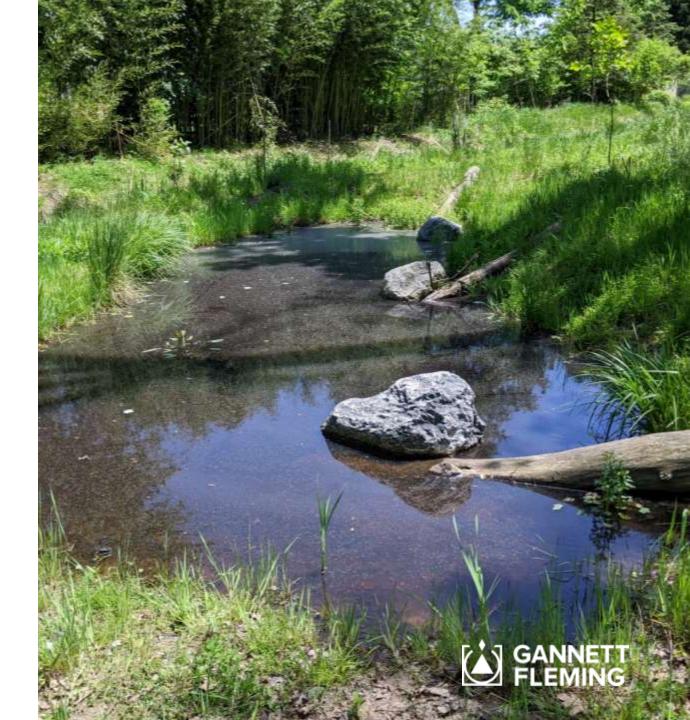
Mosquitos | Cedar Branch

- Construction of the Reach 5 channel reduced mosquito density by 2.0 individuals/sq. ft and changed the community
- Only Cx. pipiens was present before and after construction. Wide distribution and tolerance for water quality.
- The presence of species of *Anopheles* suggests water quality improvement in Reach 5, as at least one species (*A. punctipennis*) is reported to prefer clean water (WRBU, 2021a).
- Three container species were identified but varied in population between vernal pools.
- Cx. Territans only feeds on amphibians and requires good water quality
- Aedes albopictus (Asian tiger mosquito), the most common urban pest, was absent in all samples.

Lessons Learned

- New detail includes planting plugs and livestakes in vernal pools
- Boulders can be better positioned for habitat/basking
- Vernal pools colonize and naturalize quickly
- Vernal pool benthic communities diversified within the first year
- Low risk
 - Too much water becomes a wetland
 - Too little water is a dry depression
- Location, Location
 - Needs sufficient drainage area for inundation
 - Cannot rely solely on flood flows

Cooper Branch vernal pool in winter



Cooper ranch vernal pool that never held water

Lessons Learned

- Can be difficult to visualize trends from monitoring due to wet/dry periods
- Increases habitat and species diversity within the stream valley
- Cost effective
- Mosquitos are present, including container mosquitos, but in limited numbers
- Asian tiger mosquito absent in all samples across both projects

THANK YOU!