

A NATURE BASED APPROACH FOR RESILIENT INFRASTRUCTURE SEPTA JENKINTOWN STREAM RESTORATION

AUGUST 22, 2023 PRESENTED TO: NATIONAL STREAM RESTORATION CONFERENCE 2023

PROJECT OVERVIEW

PRELIMINARY FLOOD STUDY AND INVESTIGATIONS

FLOOD MITIGATION APPROACH

CONSTRUCTION CONSIDERATIONS / LESSONS LEARNED

QUESTIONS

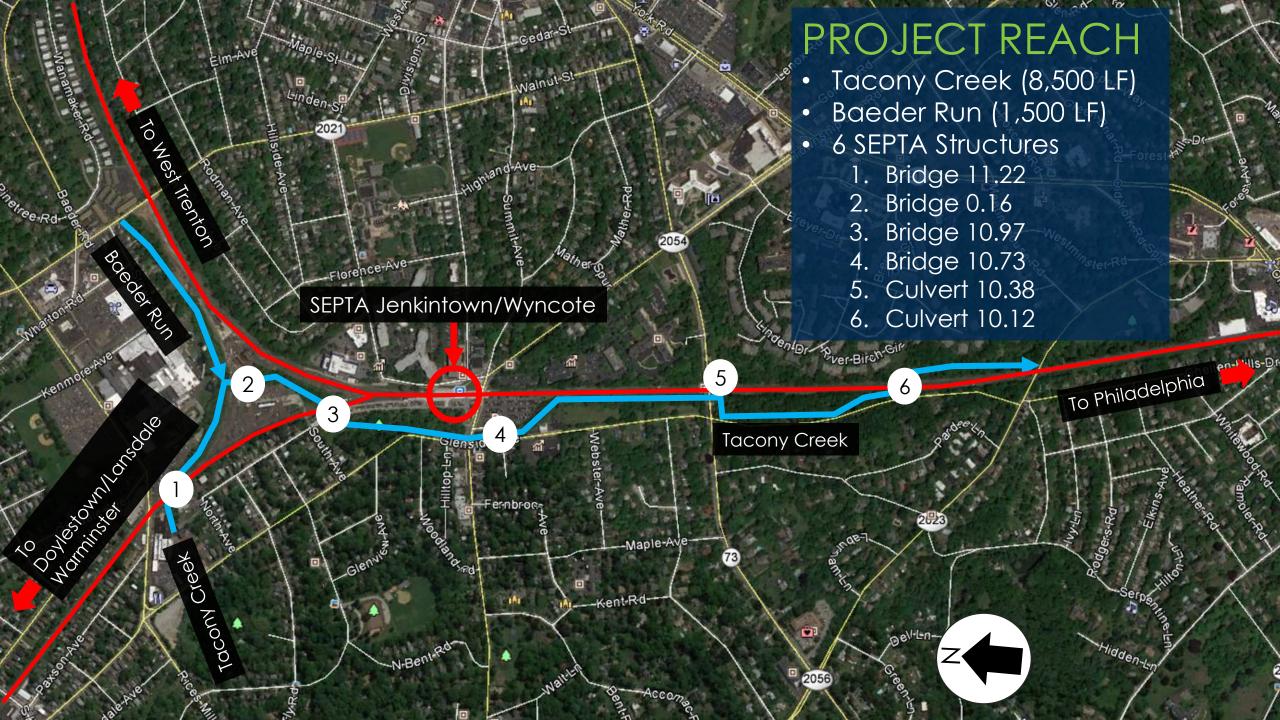
PROJECT OVERVIEW

PROJECT BACKGROUND

- SEPTA Infrastructure Resilience Program
- Project Funded by the FTA Hurricane Sandy Resiliency Grant Program
 - \$20 Million Total Project Cost (~\$15M Construction)
- Provide Infrastructure Protection and Resiliency at Jenkintown/Wyncote Station:
 - Comprehensive Study of Drainage Patterns and Suggested Improvements at Jenkintown/Wyncote Station
 - Design and Construction of New Box Culvert and Detention System at Culvert 10.38.
 - Design and Construction of Reinforcements to Bridge 10.97 and Stabilization of Surrounding Area

PROJECT LOCATION

- Southeastern Pennsylvania Transportation Authority (SEPTA) Jenkintown/Wyncote Station
- Located in Abington Twp, Cheltenham Twp and Jenkintown Boro, Montgomery County, PA
- Busiest Station Outside of Philadelphia (6th Busiest Overall)
- Frequently Flooded Area
 - Confluence of Tacony Creek and Baeder Run

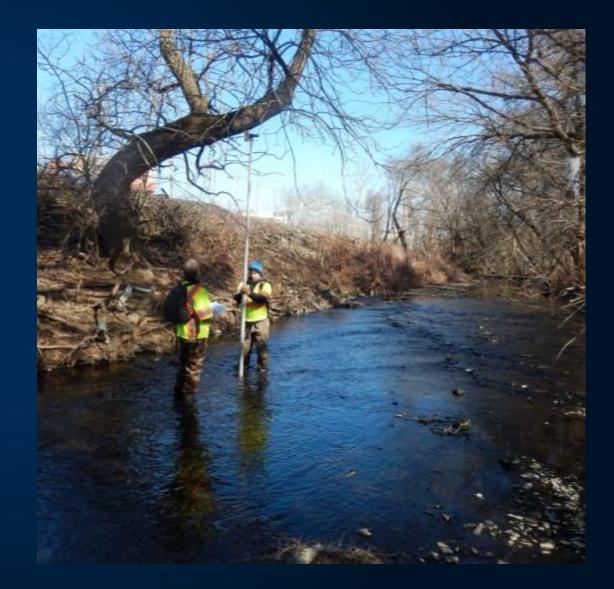

PROJECT LOCATION

Philadelphia

amden

Voorh

önshohocken


EXISTING CONDITIONS

PRELIMINARY FLOOD STUDY AND INVESTIGATIONS

PRELIMINARY FLOOD STUDY AND INVESTIGATIONS

- Stream Corridor and Watershed
 Drainage Investigations
 - 10,000 LF Stream Channel Assessment
 - Watershed and Drainage Studies
 - Structural/Geotechnical Investigations
- Menu of Options
 - (3) Alternatives each location
 - Cost/Benefit Analysis
 - Preferred Alternative Selection
- H&H Modeling
 - HEC-RAS (1D) and TUFLOW (2D) Models
 - Verification of Recommendations
 - Quantitative Benefits
 - Design Efficiency

MENU OF OPTIONS

TARGETED BENEFITS

Infrastructure Protection

Stream Channel Stability

Environmental Stewardship

Flood Reduction

Stormwater Drainage

Reduced Maintenance

Stormwater Management

Structural Stability

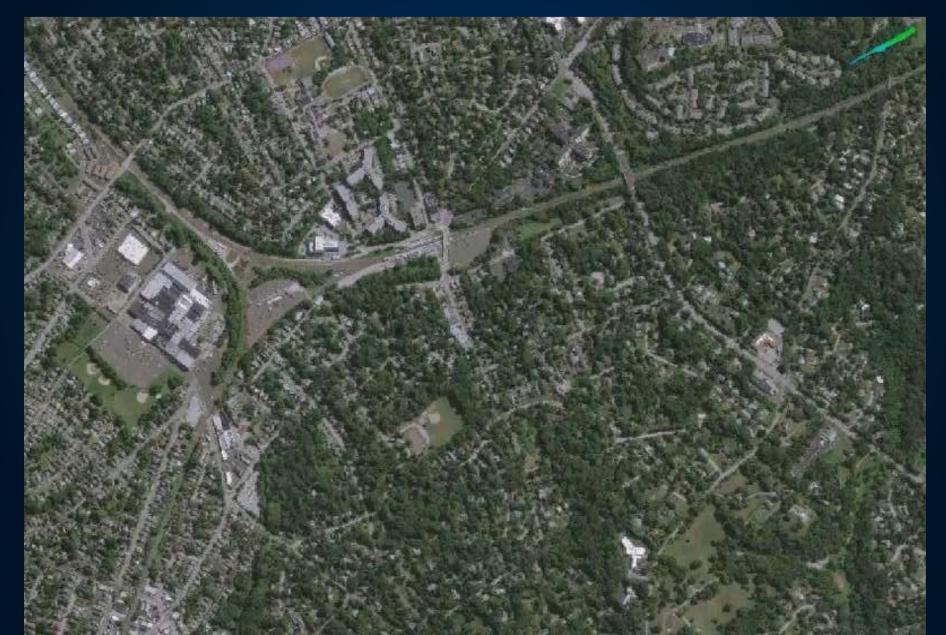
Community Outreach

MENU OF OPTIONS

Benefit	Option A	Option B
Infrastructure Protection		
Flood Reduction		\bigcirc
Reduced Maintenance		
Structural Stability		
Stream Channel Stability		
Stormwater Conveyance	\bigcirc	\bigcirc
Stormwater Management	\bigcirc	\bigcirc
Community Outreach		\bullet
Environmental Stewardship	\bigcirc	\bigcirc
Cost*	1.75M	365K - 670K

Improvement is **well** suited for this benefit

Improvement is *moderatelywell* suited for this benefit

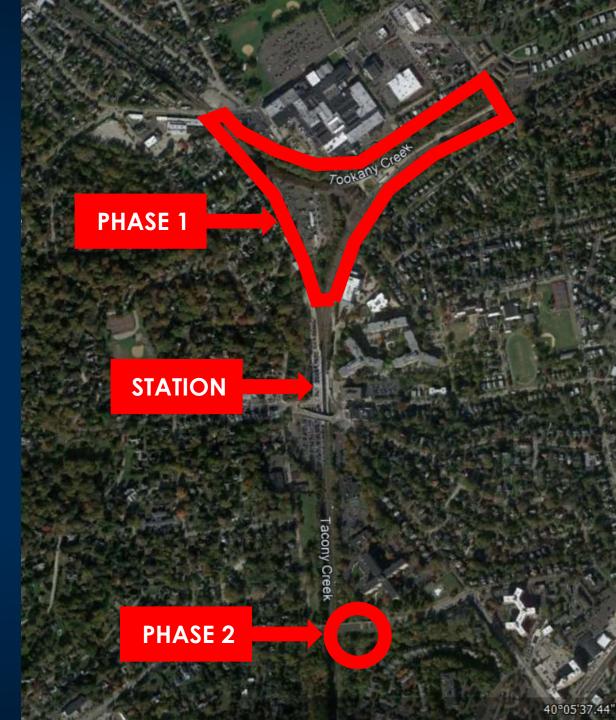

Improvement is *not* suited for this benefit

*Cost represents an order of magnitude estimation for earthwork and materials required to implement the proposed improvement; cost does not include any necessary: design, permitting, E&S, ROW purchase, track outages, etc.

MENU OF OPTIONS

Priority	Project	Station	Cost A		Cost B		Cost C		Project	
		Station	Low	High	Low	High	Low	High	Low	High
High	Railroad Embankment Slope Failure	R4: 69+00 to 72+50	350K+		950K	1.4M	-		350K	1.4M
High	Significant Streambank Erosion at	R4: 73+00 to 75+00	175K		75K		50K		50K	175K
High	Multiple Railroad Embankment Failures	R4: 80+00 to W Church	300K		160K		-		160K	300K
Medium	Scour Along Toe of Stone Retaining	R3: 38+00 to 39+00	R3: 38+00 to 39+00 60K		-		-		60K	60K
Medium	Significant Streambank Erosion	R3: 39+50 to 43+00	200K+		1M	1.2M	-		200K+	1.2M
Medium	Significant Streambank Erosion	R3: 45+50 to 48+00	150K		750K	875K	225K		150K	875K
Low	Scour Behind Stone Retaining Wall	R2: 24+00 to 24+75	15K		-		-		15K	15K
Low	Streambank Erosion at Stone Retain	R2: 24+50	150K 225K		30K		-		30K	225K
Low	Rock Armored Slope Failure	R2: 27+00 to 28+00	25K		50K		-		25K	50K
Low	Significant Scour Behind Stone Retai	R2: 32+00 to 34+00	45K		100K		-		45K	100K
Low	Streambank Erosion at Bridge Appro	R2: 34+50	25K		100K		-		25K	100K
Low	Stone Retaining Wall Failure	R4: 77+00 to 79+50	200K 230K		-		-		200K	230K
		Total	11.43M	12.31M	7.93M	9.44M	35	0K	7.61M	16.99M

TUFLOW (2D) MODEL

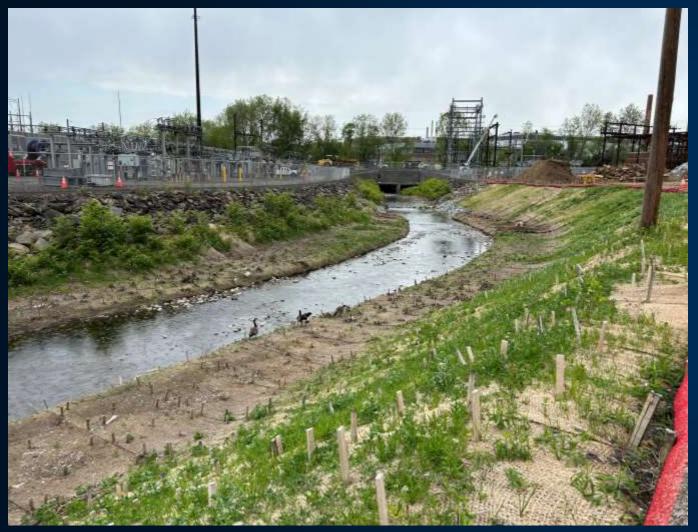

TUFLOW (2D) MODEL

FLOOD MITIGATION APPROACH

FLOOD MITIGATION APPROACH

- Phase 1: Stream Restoration
- Phase 2: Culvert 10.38 Replacement
- Other Phases
 - 300 LF Stream Restoration at Bridge 11.22
 - Bridge 10.73 Replacement and 800 LF
 Stream Restoration at SEPTA Parking Lot
 - 1,200 LF Stream Restoration at Washington Lane

PHASE 1: STREAM RESTORATION


Baeder Run Stream Restoration

- >1,000 LF Stream and Floodplain Restoration
 - 350 LF Stream Channel Daylighted
- 0.5 Acre of Wetland Creation
- 270,000 CF of Additional Flood Storage

Baeder Run Flood Overflow Storage Basin

• 90,000 CF of Additional Flood Storage


PHASE 1: STREAM RESTORATION

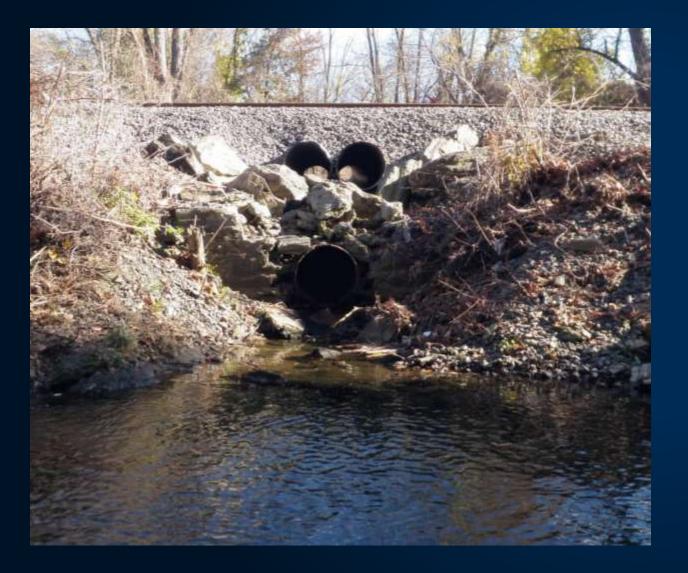
TACONY CREEK STREAM RESTORATION

- >600 LF Stream and Floodplain Restoration
- 0.5 Acre of Wetland Creation
- 210,000 CF of Additional Flood Storage

PHASE 1: STREAM RESTORATION

BRIDGE 0.16 REPLACEMENT

 Hydraulically Equivalent Single-Span Opening (CONSPAN) to Eliminate Center Pier (Maintenance Issue)


BRIDGE 11.22 REHABILITATION

- Stone Repair and Repointing
- Replace Gabion Basket Retaining Walls
- Upstream Hydraulic Control for Tacony Creek

BRIDGE 10.97 REHABILITATION

- Stone Repair and Repointing
- Downstream Hydraulic Control for Tacony Creek

PHASE 2: CULVERT 10.38 REPLACEMENT

CULVERT 10.38 REPLACEMENT

- Track Ballast Blown Out During Tropical Storm Lee (2011)
- Major Track Outage and Service
 Delays
 - Located Between Philadelphia and Jenkintown Station
 - Interrupting Lansdowne/Doylestown, Westminster and West Trenton Lines
- 6'x8' Concrete Box Culvert to Replace Inefficient (3) Pipe Culvert System

CONSTRUCTION CONSIDERATIONS/ LESSONS LEARNED

UNDERGROUND UTILITIES

CONSTRUCTION CONSIDERATIONS

- Unknown underground utilities
- Confirmation of underground utilities

LESSONS LEARNED

- Perform exhaustive historical and record drawing review.
- Perform utility test pits for critical areas.

SOIL TESTING

CONSTRUCTION CONSIDERATION

• Classification of excavated soils

LESSON LEARNED

- Ensure soil testing program and specifications are followed.
- Perform pre-construction testing if feasible.

QUESTIONS

CONTACT US:

Tyler Charles, PE

Water Resources, Associate Philadelphia, PA 215-496-4756 tcharles@jmt.com