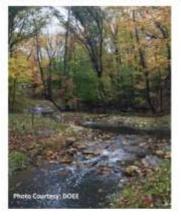
TRENDS IN STREAM RESTORATION CREDITING AND IMPLEMENTATION IN THE MID-ATLANTIC REGION

AUGUST 1, 2022

DAVID WOOD & TOM SCHUELER CHESAPEAKE STORMWATER NETWORK <u>WOOD.CSN@OUTLOOK.COM</u> <u>WATERSHEDGUY@HOTMAIL.COM</u>



CHESAPEAKE BAY BMP CONTEXT

- BMP Expert Panel Reports Define "Crediting Protocols" for projects under the Bay TMDL
- The basic elements of the reports:
 - Key Definitions,
 - Qualifying Conditions,
 - How to Calculate Pollutant Reductions
 - Literature Review of Supporting Science
 - Verification, Tracking and Reporting Requirements
- There are dozens of available BMPs, with thousands of flavors

FINAL Report USWG Approved: 10/15/19 WQGIT Approved: 12/9/19 Revised: 2/27/20

Consensus Recommendations for Improving the Application of the Prevented Sediment Protocol for Urban Stream Restoration Projects Built for Pollutant Removal Credit

Drew Altland, Joe Berg, Bill Brown, Josh Burch, Reid Cook, Lisa Fraley-McNeal, Matt Meyers, Josh Running, Rich Starr, Joe Sweeney, Tess Thompson, Jeff White and Aaron Blair

HISTORY OF CBP STREAM RESTORATION CREDITING

- Expert Panel Report approved in 2013
- Report was revised after a "test-drive" period in 2014
- FAQ document in early 2018
- 5 Groups formed to revisit Protocols in mid-2018

NameAffiliationRich StarrEcosystem Planning and RestorationKathy HovermanKCITim SchuelerHazen and SawyerKip MumawEcosystem ServicesNeely LawCenter for Watershed ProtectionMeghan FellowsFairfax County, DPWESSandra DavisUS Fish and Wildlife ServiceJennifer RauhoferStormwater Management Consulting		Group I (Verification)	
Rich StarrEcosystem Planning and RestorationKathy HovermanKCITim SchuelerHazen and SawyerKip MumawEcosystem ServicesNeely LawCenter for Watershed ProtectionMeghan FellowsFairfax County, DPWESSandra DavisUS Fish and Wildlife ServiceJennifer RauhoferStormwater Management Consulting	Name		
Kathy HovermanKCITim SchuelerHazen and SawyerKip MumawEcosystem ServicesNeely LawCenter for Watershed ProtectionMeghan FellowsFairfax County, DPWESSandra DavisUS Fish and Wildlife ServiceJennifer RauhoferStormwater Management Consulting			
Tim SchuelerHazen and SawyerKip MumawEcosystem ServicesNeely LawCenter for Watershed ProtectionMeghan FellowsFairfax County, DPWESSandra DavisUS Fish and Wildlife ServiceJennifer RauhoferStormwater Management Consulting			
Kip MumawEcosystem ServicesNeely LawCenter for Watershed ProtectionMeghan FellowsFairfax County, DPWESSandra DavisUS Fish and Wildlife ServiceJennifer RauhoferStormwater Management Consulting	Kathy Hoverman	KCI	
Neely LawCenter for Watershed ProtectionMeghan FellowsFairfax County, DPWESSandra DavisUS Fish and Wildlife ServiceJennifer RauhoferStormwater Management Consulting	Tim Schueler	Hazen and Sawyer	
Meghan FellowsFairfax County, DPWESSandra DavisUS Fish and Wildlife ServiceJennifer RauhoferStormwater Management Consulting	Kip Mumaw	Ecosystem Services	
Sandra Davis US Fish and Wildlife Service Jennifer Rauhofer Stormwater Management Consulting	Neely Law	Center for Watershed Protection	
Jennifer Rauhofer Stormwater Management Consulting	Meghan Fellows	Fairfax County, DPWES	
	Sandra Davis	US Fish and Wildlife Service	
Josh Burch DOFF	Jennifer Rauhofer	Stormwater Management Consulting	
	Josh Burch	DOEE	
Scott Cox PADEP	Scott Cox	PADEP	

Table I: Outfall Restoration Crediting Team			
Name Affiliation			
Ray Bahr	MDE		
Stephen Reiling	DOEE		
Tracey Harmon	VDOT		
Brock Reggi	VADEQ		
Karen Coffman	MDOT SHA		
Ryan Cole	MDOT SHA (alternate)		
Elizabeth Ottinger	US EPA Region 3		
Carrie Traver/Aaron Blair	US EPA Region 3		
Alison Santoro	MD DNR		
Ted Brown	Biohabitats		
Chris Stone	Loudoun County, VA		
Erik Michelsen	Anne Arundel County		
Neil Weinstein	LID Center		
Nick Noss	PA Turnpike Commission		

Table 1. Membership for Group 3			
Name	Affiliation		
Drew Altland	RKK		
Lisa Fraley-McNeal	Center for Watershed Protection		
Joe Berg	Biohabitats		
Rich Starr	Ecosystem Planning and Restoration		
Josh Running	Stantec		
Matt Meyers	Fairfax County, VA DPWES		
Bill Brown	PADEP		
Jeff White	MDE		
Josh Burch	DOEE		
Reid Cook	RES Consultants		
Aaron Blair	EPA		
Tess Thompson	Virginia Tech		
Joe Sweeney	Water Science Institute		

Table I. Roster for Group 4		
Name	Affiliation	
Joe Berg	Biohabitats	
Drew Altland	RKK	
Bill Stack	CWP	
Scott Lowe	McCormick Taylor	
John Hottenstein	Bayland Consultants	
Jeremy Hanson	Virginia Tech	
Sujay Kaushal	University of Maryland	
Joel Moore	Towson University	
Jens Geratz	Anne Arundel County DPW	
Sean Crawford	Bayland Consultants	
Josh Burch	DOEE	
Jeff Hartranft	PADEP BWEW	
Denise Clearwater	MDE Wetlands and Waterways	
Paul Mayer	EPA Region ORD	
Durelle Scott	Virginia Tech	
Greg Noe	USGS	
Chris Becraft	Underwood and Assoc	

THE STREAM RESTORATION PROTOCOLS

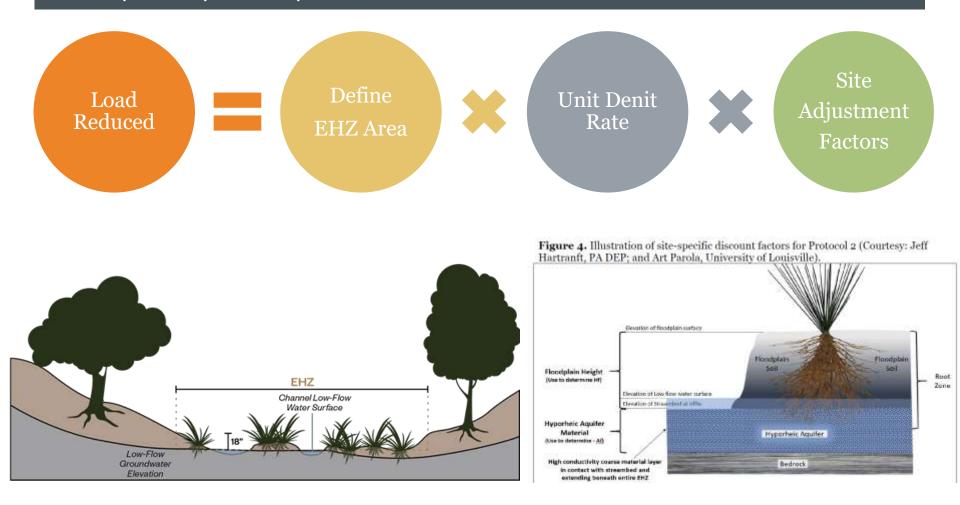
1. Prevented sediment

5. Outfall and Gully Stabilization

2. In-stream denitrification

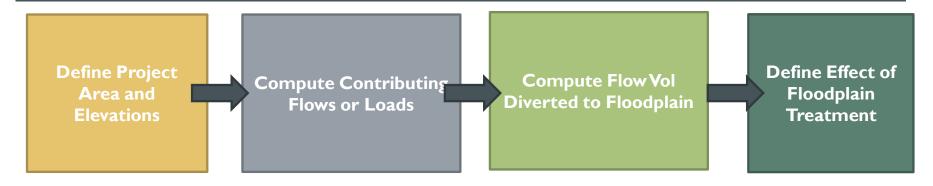


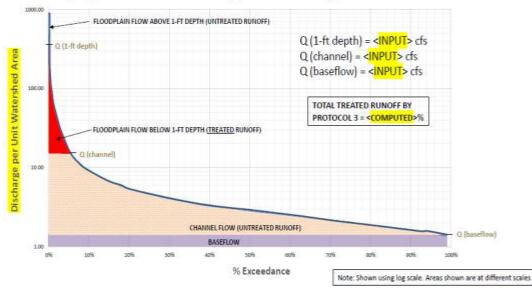
3. Floodplain reconnection


4. The "tweener" Dry Channel RSC

PROTOCOL I: PREVENTED SEDIMENT

- Approved: February 2020
- Full Report: <u>https://chesapeakestormwater.net/download/9928/</u>


PROTOCOL 2: DENITRIFICATION DURING BASEFLOW Approved: October 2020 Full Report: <u>https://chesapeakestormwater.net/download/10032/</u>

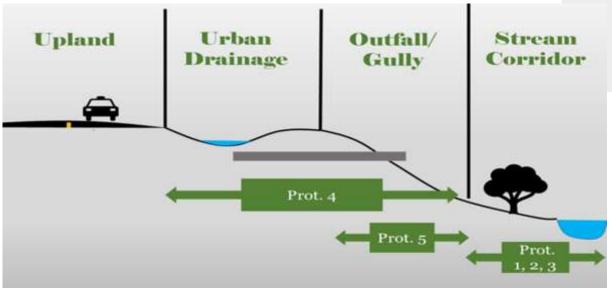

PROTOCOL 3: FLOODPLAIN RECONNECTION

Approved: October 2020

Full Report: https://chesapeakestormwater.net/download/10032/

Develop Regional Flow Duration Curve(s) from Stream Gage Data - 15 Minute Interval

PROTOCOL 5: OUTFALL AND GULLY STABILIZATION Approved: October 2019 Full Report: <u>https://chesapeakestormwater.net/download/9714/</u>

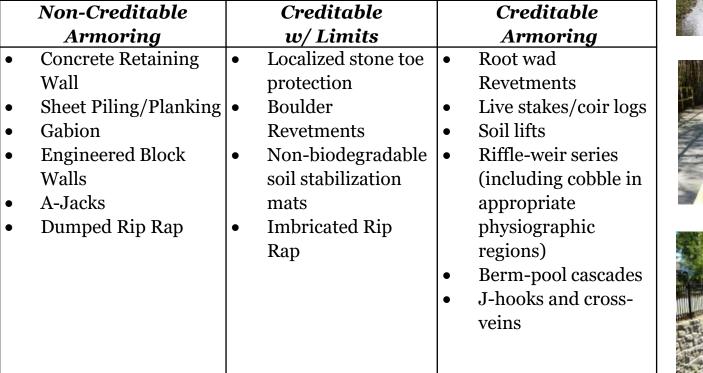

Addressing erosion driven by vertical incision.

Often caused by:

- Uncontrolled runoff upstream,
- Migrating nick points,
- Poor slope stabilization or energy dissipation structures.

1.

NEW QUALIFYING CONDITIONS



- Specific limits to bank armoring
- Project must meet applicable floodplain management requirements in the stream corridor
- Project must evaluate the duration of floodplain ponding in the context of the restoration goals
- Project must demonstrate consideration of potential unintended consequences of the restoration

THREE ARMORING CATEGORIES

Stream restoration projects that are primarily designed to protect public infrastructure by bank armoring or rip rap **do not** qualify for a credit.

ALC: Y	the second	-	10
allana.	THE REAL	副黨	
			富
	and a	Wing and	
		and the	and the
		是主要	A COM

DEALING WITH THE DEFAULTS

Original EPR

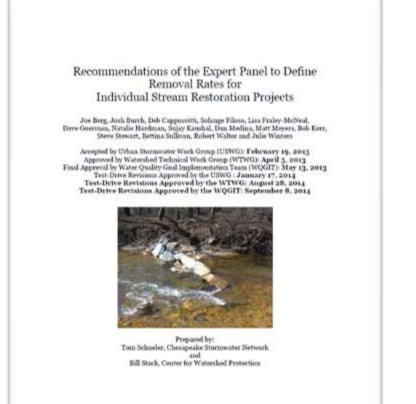
- Nutrient Concentration Default Rates
- Bulk Density Example Being Used as Default
- Over-Use of Default Nutrient and Sediment Reductions

New Guidance

- Site Specific Monitoring for Bulk-Density and Nutrient Concentration
- Recommended Field and Lab Methods
- Phase out of default reporting
- Separate section on planning level estimates

WHAT WE'VE LEARNED

We've seen a ton of innovation in response to this process, but also plenty of cut corners. Early and frequent communication with stakeholders is increasingly important. So is training.



Nutrient and sediment reductions were meant to be one outcome of restoration (not the only). They provide a great incentive but it is hard to get the horses back in the barn.

- Qualifying Conditions are critical to help guide users to better project selection but are not perfect.
- Calculated reductions are only as good as the site-level monitoring conducted. But striking the right balance is tricky.

Long-term maintenance and verification is critical to project success and should consider the implications of climate change.

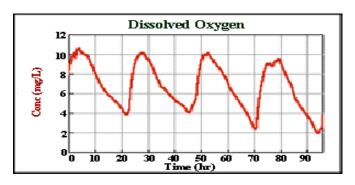
A short history of the unintended consequences caused by pollutant reduction crediting for stream restoration in the Chesapeake Bay watershed: 2010-2022

#1: EXPLOSIVE GROWTH IN STREAM RESTORATION IN THE MID-ATLANTIC

- Triggered hundreds of miles of stream projects in the mid-Atlantic in the last decade
- Municipalities have several hundred more miles in the design/permitting pipeline (2 to 5 years)
- Private sector restoration "industry" has been fundamentally transformed in both +/- ways
- Caused sharp increases in construction costs, but also improvements in project management

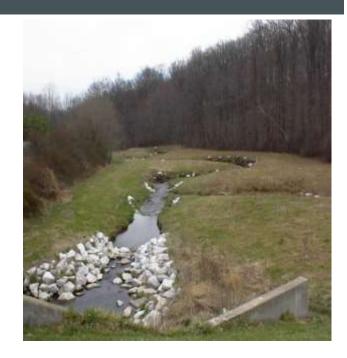
#2 SOME PROJECTS PRODUCED ENVIRONMENTAL IMPACTS AND LIMITED STREAM OUTCOMES

Project Stream Channel

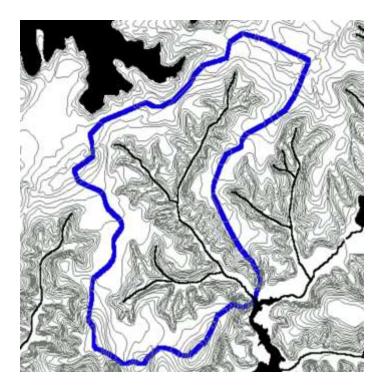

- Depleted Dissolved Oxygen
- Iron Flocculation
- Warmer Summer Stream Temps
- More Instream Primary Production
- Turbidity During Construction
- Initial Decline in Benthic IBI

Floodplain/Downstream

- Project Tree Removal
- Post Project Tree Loss
- Vector for Invasive Plant Species
- Shift in Wetland Type/Functions
- Increased Flooding
- Initial Decline in Downstream IBI
- Upstream Blockage for Aquatic Life



#3: TRIGGERED A WAVE OF ORGANIZED COMMUNITY OPPOSITION TO PROJECTS AND STRESSED OUT STREAM REGULATORS


- Project construction looks like hell to most suburban citizens, especially if any tree clearing or heavy-duty channel armoring is involved
- Permit agencies were not prepared for the wave of new permit applications and struggled on how to properly review new restoration design approaches
- Eventually led to more streamlined restoration permits and 25 best practices for individual projects

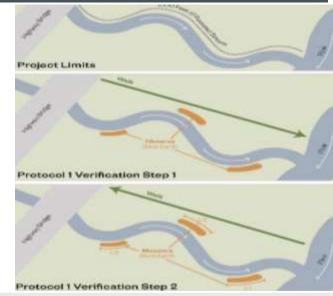
#4: SHIFT IN WHERE STREAM PROJECTS ARE LOCATED TO MAXIMIZE POLLUTANT REDUCTION AND REDUCE COST

- Eroding stormwater outfalls at the top of the urban steam network
- From suburban watersheds to more rural applications in the ex-urbs (especially to make room for LSR and other floodplain reconnection projects)
- Initial tyranny of P-1 (prevented sediment) protocol drove many urban and suburban projects, but gradual shift to floodplain reconnection, where room is available (P-2 and P-3 updates helped).
- Shift to pay for performance contracts, venture capital, and multiple project site assessments

#5: CREATED PRESSURE TO DEVELOP PRACTICAL METHODS TO INSPECT AND VERIFY THE PERFORMANCE OF INDIVIDUAL PROJECTS

Methods jointly developed by the public and private sector: <u>https://chesapeakestormwater.net/download/9621/</u>

Protocol-specific visual indicators

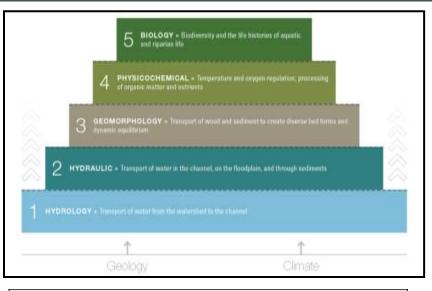

Status

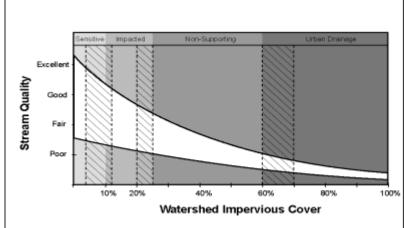
Functioning

Showing Major Compromise

Project Failure

- Rapid field inspection, followed by a forensic investigation for failing projects
- Numeric triggers to define failure and corresponding management actions to preserve (or lose) credit




Defining Loss of Pollutant Reduction Function for

	Protocol I		
% Failing *	Criteria for Loss	Key Visual Indicators	
0 to 10% of reach	Evidence of bank or bed instability such	 Severe bank undercutting (bare earth exposed) 	
20 to 40% of reach	that the project delivers more	 Incising bed (bed erosion evident) Flanking or downstream scour of 	
50% or more of reach	sediment downstream than designed,	 channel structures Failure or collapse of bank armoring practices 	

#6: THE FRUSTRATING QUEST TO DEFINE ACCEPTABLE LEVELS OF FUNCTIONAL UPLIFT FOR PROJECTS OVER TIME

- The core functional assessment framework was solid (although focused more on stream functions than floodplain ones).
- Actual implementation of uplift monitoring on projects has been slow and un-even
- Fair amount of research funding for this type of monitoring in the CB watershed in recent years
- Still unclear on what the upper limit expectations for WQ & biologic uplift for urban and rural stream projects
- Looks like a quest that your professional groups should join in the coming years!

#7 STREAM RESTORATION PRACTICES ARE EXTREMELY VULNERABLE TO CLIMATE CHANGE

- Outdated design parameters (width, depth, meander radii, etc.)
- Poor reference site selection
- Rising stream temps may be shifting ecological uplift potential
- Design principles are shifting

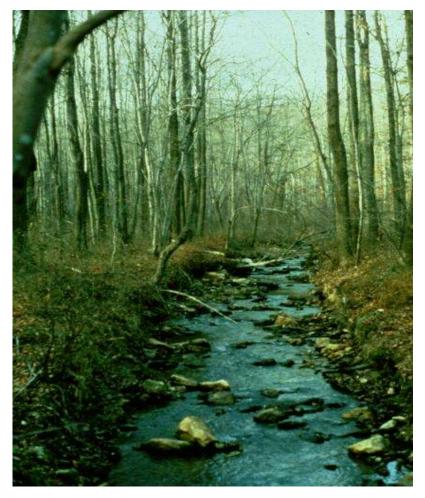
 impacts of climate change are still not well understood

Projected Increase in Future 24 Hour Design Storms Compared to Current Storms

City	2 Year Storm	10 Year	100 Year Storm
Virginia Beach VA	+ 13%	+ 8%	+ 13%
Annapolis, MD	+ 14%	+ 17%	+ 9%
Harrisburg. PA	+ 14%	+ 16%	+ 14%

Source: MARISA as included in CSN (2021)

Your local values can be accessed from the tool, along with confidence intervals \backslash


Median Projected Precipitation Depths (In.) for 2050-2100 (RCP 4.5)

WHAT'S NEW AT CSN IN THESE DAYS?

- Unified Guide to Stream Restoration Protocols
- Chesapeake Urban Stormwater Professional (CUSP) Training
- Impact of Extreme Rainfall and Warming on Stormwater BMPs
- 2023 BUBBAs Awards and Baywide Stormwater Partners Retreat

Q & A and Audience Discussion

