Flood Mitigation Assessment of Stream Debris Removal

Neuse River Bridge on New Bern Ave, Raleigh, 9/17/21 News & Observer

Haywood County 8/18/21 ABC 13 News

NC STATE UNIVERSITY

Jack Kurki-Fox, PhD, PE¹ Barbara Doll, PhD, PE^{1,2} Dan Line, PE¹

¹Department of Biological and Agricultural Engineering, NCSU ²NC Sea Grant

Stream Wood Debris Removal

- Congressional appropriations date to late 1700s
- Major early focus of the US Army Corps of Engineers
- Most wood removed from streams and rivers by early 20th century
- Perception that steams should be free of large wood

Stream Wood Debris Removal in North Carolina

- The Streamflow Rehabilitation Assistance Program (StRAP)
 - \$38 million in 2021-2022 state budget
 - "Projects that help reduce flooding and restore streams across North Carolina"
- >\$100 million for Hurricanes Matthew and Florence
- Limited study of flood mitigation benefits
 - Mostly anecdotal reports of flood reduction
- Many ecological benefits of wood in streams

Objective: Determine the flood mitigation benefit of large wood removal from streams in North Carolina

Identify Study Reaches

• NCDA Provided Data on Hurricane Florence Requests/Funded Projects

Site Visits

- Wayne County
 - Charles Holland
 - Longhorn Stream
 - Bear Creek (Completed)
 - Cabin Branch
 - Beaver Dam
- Harnett County
 - Lower Little River
 - Neil's Creek
- Cumberland County
 - Lower Little River
 - Little Rockfish Creek
 - Harrison Creek
 - Locks Creek

Study Locations

Site Assessment

- 2400 4000 ft. reaches
- Inventoried all wood debris (LWD Index)
- Cross section surveys

Neil's Creek

- Resident complaints of flooding
 - Most severe channel blockage = ~30%

Little Rockfish Creek

- Moderate debris accumulation
- Reference quality stream
- Wide, well-connected floodplain
- Most severe channel blockage = $\sim 40\%$

Silver Creek

- Most substantial debris accumulation
- Incised, bank erosion at debris dams
- Most severe channel blockage = 50%

Silver Creek

Modeling Approach

Floodplains Flood!

<u>100-year floodplain:</u> 1% annual chance of flooding to a modeled elevation (Base Flood Elevation)

Floodplains Flood!

Neil's Creek

Silver Creek

Little Rockfish Creek

Representing Wood Debris in HEC-RAS 2D Mesh

Neil's Creek Harnett County

- Minor debris accumulation
- Wide floodplain

Hypothetical Debris Blockage - 25%, 50%, 75%

- Large Woody Debris dams typically occur every 7–10 channel widths (Linstead and Gurnell, 1998)
 - For this example
 - 210 300 ft

Debris Dam in HEC-RAS

Neil's Creek

- 10-year: 75% channel blockage
 ~1 ft WSE rise
- Floodplain width
- 100-year: 75% blockage
 - ~0.5 ft WSE rise

Little Rockfish Creek Cumberland County

- Moderate debris accumulation
- Reference stream
- Embankments

Little Rockfish Creek

- Wide Floodplain
 - ER > 30

Silver Creek Burke County

- Railroad backwater
- 10-year
 - Existing debris: <0.2 ft.
 - 75% blockage = 0 1 ft
- Floodplain width

Sensitivity Analysis

Sensitivity Analysis

- WSE ↑ narrow floodplain
- WSE \uparrow lower slope
- WSE ↑ more channel blockage
- Effects are negligible for channel slope > 0.5%

Sensitivity Analysis

Bridge and Culvert Blockage

Bridge Blockage with Woody Debris

Bridge Blockage with Woody Debris

30% Blockage

Summary

- Removal of existing debris along three study streams will have minimal impact on reducing flooding (<0.2 ft)
- Debris accumulation has **negligible impact** on flooding for storms >10-yr event
- Backwater from **existing undersized infrastructure** (culverts) can override any potential impacts of woody debris removal
- Large blockages (75%) increased water surface by only 0 to 0.5 ft on wide floodplains and <1.5 ft on narrower floodplains
- 20% blockage or more at bridges can increase risk of bridge overtopping and road flooding

When should we remove debris from streams?

Always Warranted

- At bridges and culverts
- Navigation (canoe, kayak)
- Bank erosion risk
- Removal of non-natural debris
- Likely to reduce flooding:
 - Narrow floodplain on steeper slopes

Unlikely to reduce flooding:

- Wide floodplain on low slopes
- Substantial downstream obstructions undersized culverts, embankments

No Impact

• Debris accumulation is located upstream flooding issues

Recommendations

- Always warranted At bridges and culverts, Navigation, Bank erosion risk, Removal of nonnatural debris
- Education Needed Flooding on floodplains is a natural occurrence
- Implement infrastructure upgrades and stream restoration efforts that provides permanent solutions
- Move vulnerable structures out of flood prone areas – flood risk is increasing
- Objective process for site selection

Questions?

Jack Kurki-Fox - jjkurkif@ncsu.edu Barbara Doll - bdoll@ncsu.edu

Funding:

