

A Framework for Identifying and Verifying Bankfull in Diverse Landscapes and Watershed Conditions

Will Harman, PG

Many Assessment Methods Use Bankfull

- BLM's Assessment, Inventory and Monitoring Strategy (AIM)
- EPA's National Rivers & Stream Assessment (NRSA)
- EPA's Rapid Bioassessment Protocol (RBP)
- Stream Quantification Tool (SQT)
- Stream Function Assessment Method (SFAM)
- USGS's National Water-Quality Assessment Program

Many Design Approaches Use or Refer to Bankfull

- Natural Channel Design (NCD)
- Low-Tech Process-Based Restoration of Riverscapes
- Let The Water Do The Work
- Analytical Approaches

NCD and Process-Based Approaches Use Bankfull in Some Way.

Bankfull Challenges

- Lack of experience identifying and verifying bankfull.
 - Leads to repeatability issues.
- Challenges in disturbed streams.
- Challenges in regulated watersheds.
- What about anastomosed and ephemeral channels?
- What if bankfull does not apply?

We have more tools than guidance

Intermontane Plateaus, Pacific Physiographic Stream Aa+, B3, B3a, B4a, Mountain System, Pacific Division: B4c, C3b, C4, C4b, Types: Mountain Western Alaska, Alaska-Aleutian, Physiographic Northern Plateaus, Coastal Sample size: 32 Province: Trough Alaska Range, Northern Foothills, Tanana-Kuskokwim Lowland, Yukon-Physiographic Tanana Upland, Broad Pass Depression, Clearwater Mountains, Section: Talkeetna Mountains

Bankfull Regional Curves

We simply say that regional curves can be used as an aid in finding bankfull.

Framework

- Phase 1: Watershed Assessment
- Phase 2: Regional Curve Acquisition, Review, and Creation
- Phase 3: Bankfull / Geomorphic Feature Identification
- Phase 4: Bankfull Verification

Primary purpose is to improve the repeatability of assessment methods that use Bankfull!

Phase 1: Watershed Assessment

- Watershed Delineation and Drainage Area Calculation
- Precipitation / Runoff Relationships

Phase 1: Watershed Assessment

• Hydrologic Alteration

Phase 2: Regional Curve Acquisition, Review, and Creation

- Acquire existing regional curves that apply to the project watershed.
- **Review** and verify that the curves are appropriate.
- **Create** watershed-specific regional curves as needed.
 - Critical in areas with flow regulation.

What about Anastomosed Streams?

- Bankfull probably spans all channels.
- Need regional curves from anastomosed systems.
 - Response versus transport curves and single versus multi-thread.

Castro, J.M. and C.R. Thorne. 2019. The stream evolution triangle: Integrating geology, hydrology, and biology. River Research and Applications. 2019; 1-12, John Wiley and Sons

What About Tiny Ephemeral Channels?

- Bankfull *might not* apply to channels that were historically not channels.
 - Valley bottoms, swales.
 - Drain ditch (does not apply)
 versus channelized stream (does apply)

What About Wetlands?

- Bankfull represents a break in channel-forming processes and floodplain processes.
- Bankfull does not apply to wetlands that do not have a channel.

Key Regional Curve Points

- Take care to ensure that regional curves only include bankfull features and not inner berms and terraces.
 - Best if bankfull is top of bank.
- Separate curves for each hydro-physiographic region.
 - Also by Rosgen stream type and response/transport.
- Watershed-specific curves are often needed in areas with significant flow alteration and heterogeneity.

Phase 3: Bankfull / Geomorphic Feature Identification

- Look for Geomorphic Indicators Throughout Reach
 - Inner Berm
 - Bankfull (Floodplain)
 - Terrace (Abandoned Floodplain)
- Measure the Bankfull Cross Sectional Area at a Representative Riffle

Many of the assessment methods only include this phase, but without identifying multiple features.

Measure Cross Sectional Area

Also helpful to measure slope and bed material so Qbkf can be estimated.

Rapid / Coarse

Phase 4: Bankfull Verification

 Compare Cross Sectional Area to Regional Curve with Confidence Intervals.

- Below CI = Inner Berm
- Above CI = Terrace
- Between Cl's = Bankfull

Hydrology and Hydraulic Models can Play a Great <u>Supporting</u> Role

Use Hydrology and Hydraulic models to further verify the bankfull stage.

Scenario 2: Regional Curves Cannot Be Acquired.

Summary

If experienced people follow the process and use good regional curves, identifying bankfull is applicable and repeatable in most cases.