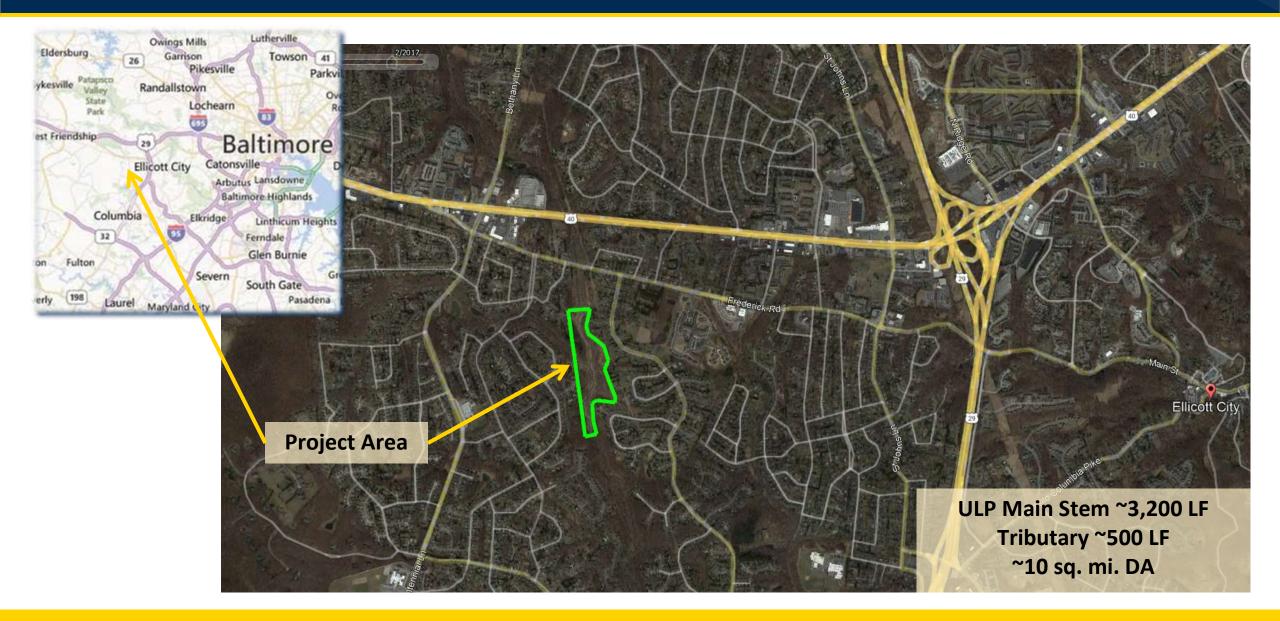


August 22, 2023

Upper Little Patuxent Restoration

10 Years of Lessons Learned


Presented to: 2023 National Stream Restoration Conference

Agenda

- 1 Project Background
- Project Constraints
- Post Construction Monitoring
- (4) Lessons Learned

1 Project Background – Where?

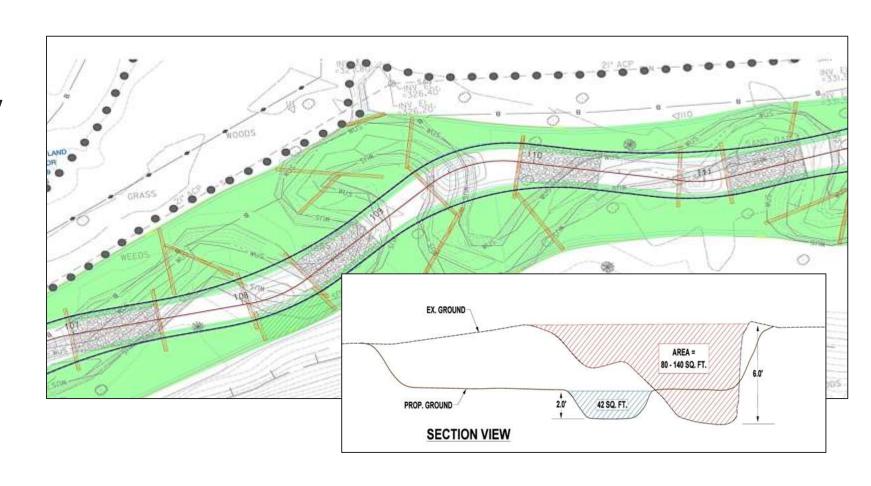
Project Background – Why?

Goals & Objectives

- Nutrient and Sediment Reduction / Chesapeake Bay TMDL
 - Improved Channel Stability
 - Increased & Stable Floodplain Connection
 - Ecological Uplift

Project Background – When?

Project Timeline

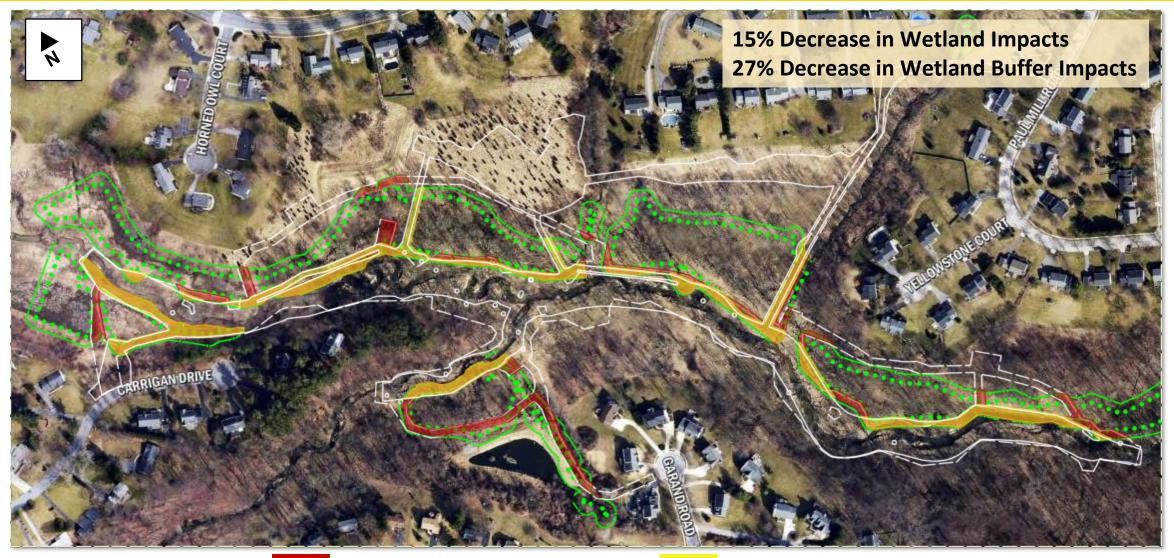

- Design 2013/2014
- Construction 2014/2015
- Monitoring 2016-2020

1 Project Background – How?

Design Build Approach

- Inset Floodplain Priority2 Restoration
- Plan, Profile and Section Modifications
- Habitat Elements
- Early Contractor
 Involvement and Review

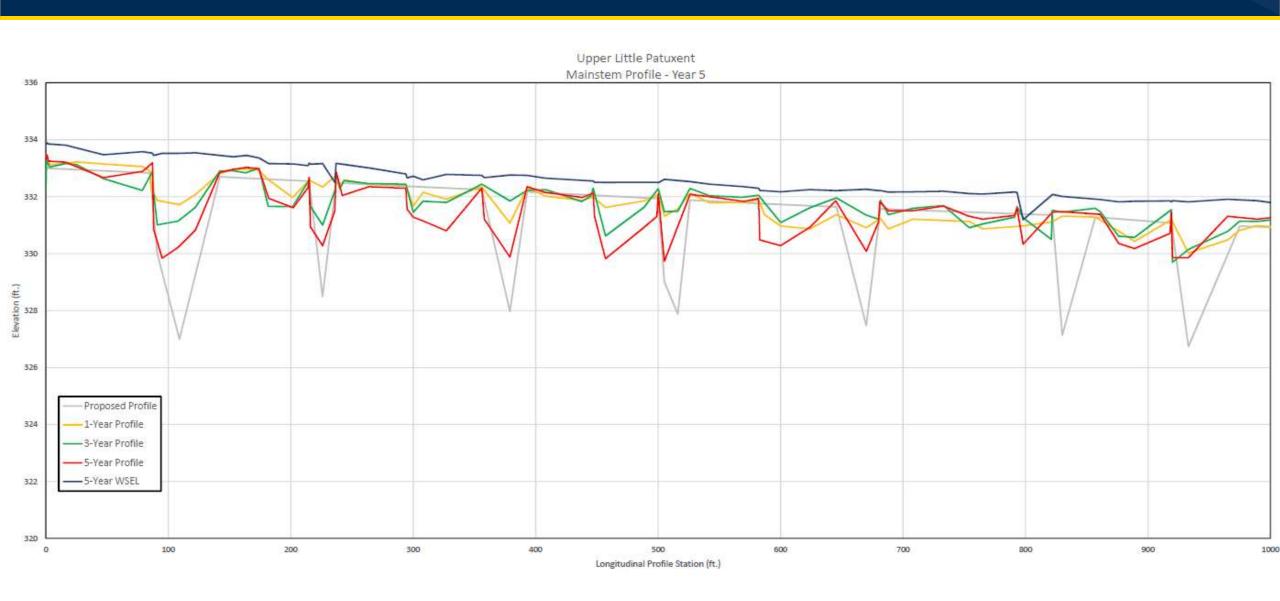
Project Constraints


Design Considerations

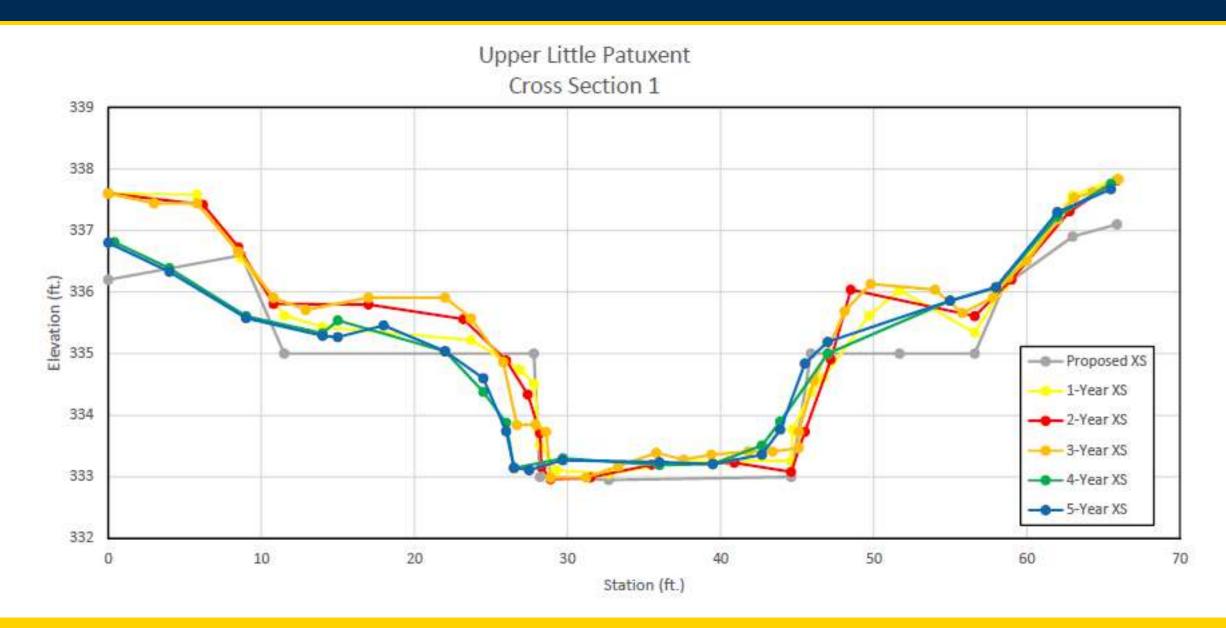
- \$1.7M Maximum Bid Price
- Adjacent Forest
- Adjacent Wetlands
- High Sediment Supply (silt, sand, gravel)
- Sewer Infrastructure ACP

2

Project Constraints – Wetlands



2


Project Constraints – Forest

3 Post Construction Monitoring - Profile

Post Construction Monitoring - Section

Post Construction Monitoring - Section

Post Construction Monitoring – Flood Performance

Floods of Record

- June 30, 2016 6 in / 2 hours
- May 27, 2018 9.7 in / 2 hours

PDS-based precipitation frequency estimates with 90% confidence intervals (in inches) ¹													
Duration	Average recurrence interval (years)												
Duration	1	2	5	10	25	50	100	200	500	1000			
5-min	0.344 (0.313-0.379)	0.412 (0.374-0.454)	0.489 (0.443-0.539)	0.546 (0.493-0.601)	0.617 (0.553-0.679)	0.669 (0.598-0.738)	0.721 (0.641-0.797)	0.770 (0.681-0.855)	0.833 (0.729-0.930)	0.881 (0.766-0.988)			
10-min	0.550 (0.499-0.606)	0.659 (0.598-0.726)	0.784 (0.710-0.864)	0.873 (0.789-0.962)	0.983 (0.882-1.08)	1.07 (0.952-1.18)	1.15 (1.02-1.27)	1.22 (1.08-1.36)	1.32 (1.15-1.47)	1.39 (1.21-1.56)			
15-min	0.687 (0.624-0.758)	0.828 (0.751-0.912)	0.991 (0.898-1.09)	1.10 (0.998-1.22)	1.25 (1.12-1.37)	1.35 (1.21-1.49)	1.45 (1.29-1.60)	1.54 (1.36-1.71)	1.66 (1.45-1.85)	1.74 (1.51-1.95)			
30-min	0.942 (0.856-1.04)	1.14 (1.04-1.26)	1.41 (1.28-1.55)	1.60 (1.45-1.76)	1.84 (1.66-2.03)	2.03 (1.82-2.24)	2.22 (1.97-2.45)	2.40 (2.12-2.66)	2.64 (2.31-2.94)	2.82 (2.45-3.16)			
60-min	1.18 (1.07-1.30)	1.44 (1.30-1.58)	1.81 (1.64-1.99)	2.08 (1.88-2.30)	2.46 (2.20-2.71)	2.75 (2.46-3.04)	3.06 (2.72-3.38)	3.36 (2.98-3.73)	3.79 (3.31-4.22)	4.12 (3.58-4.62)			
2-hr	1.41 (1.27-1.55)	1.71 (1.56-1.89)	2.17 (1.96-2.39)	2.52 (2.27-2.78)	3.02 (2.71-3.32)	3.42 (3.06-3.77)	3.85 (3.41-4.26)	4.30 (3.78-4.77)	4.95 (4.30-5.52)	5.48 (4.71-6.15)			

3 Post Construction Monitoring – Flood Performance, 2016

3 Post Construction Monitoring – Flood Performance, 2018

Post Construction Monitoring – Aquatic Biology / Chemistry

Pre-Construction Samples

- MBSS Methodology
 (https://dnr.maryland.gov/streams/pages/mbss.aspx)
- Four Total Locations & Two Sampling Periods (Nov. 2012 & Mar. 2013)
 - Middle Site BIBI 2.0 (poor)
 - Lower Site BIBI 2.0 (poor)
 - Two Upstream Control BIBI 2.7 (poor)
 - Mar 2013 Samples BIBI 1.0-1.7 (very poor)
- Water Quality
 - TN, TP, TSS, Specific Conductance (high = salts)

Sampling Manual: Field Protocols

CHESAPEAKE BAY AND WATERSHED PROGRAMS MONITORING AND NON-TIDAL ASSESSMENT

Post Construction Monitoring – Aquatic Biology

Table 5: Year 5 Benthic Index of Biotic Integrity (BIBI) Summary

		Restoration ring 2013	Post Restoration Spring 2020					
	UN	UMD Lower		ULP-1		LP-2	Improvement	
Parameter	Raw	BIBI	Raw	BIBI	Raw	BIBI	Y/N/NSC*	
Taxa Richness	13	1	26	5	23	3	Υ	
Number of EPT Taxa	1	1	5	3	5	3	Υ	
Number of Epheroptera taxa	0	1	1	1	1	1	NSC	
% Intolerant Urban	2	1	3	1	1	1	NSC	
% Chironomidae	66	1	69	1	84	1	NSC	
% Clingers	15	1	38	3	25	1	Υ	
BIBI Score		1		2.33		1.67	Υ	
						Very		
BIBI Rating		Very poor		Poor		poor		

^{*} No Significant Change

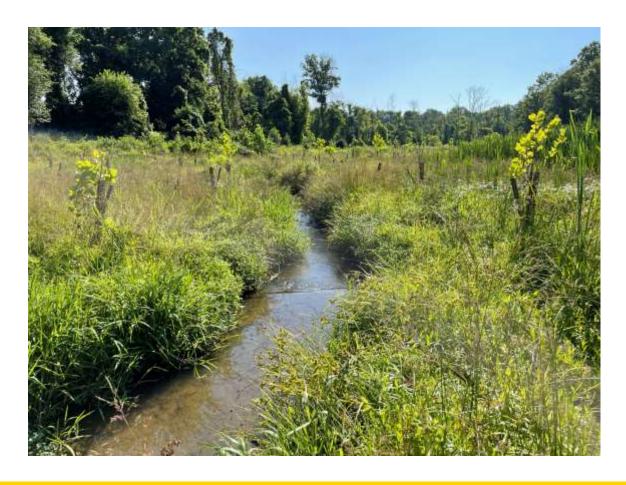
Lessons Learned – Goals / Objectives Met?

Goals & Objectives

- Nutrient and Sediment Reduction / Chesapeake Bay TMDL
 - Improved Channel Stability
 - Significantly reduced bed/bank erosion and mass wasting
 - Stable plan, profile and section for 2 storms of record
 - Some pool filling and lateral migration
 - Increased & Stable Floodplain Connection
 - Removed 15,000 CY of highly erodible sediment
 - Fine sediment deposition on inset floodplain
 - Stable floodplain for 2 storms of record
 - Ecological Uplift
 - Increased and improved riffle habitat
 - Inset floodplain wetland restoration
 - Some macroinvertebrate improvement

Lessons Learned

Missed Opportunities/Other Considerations


- Coordinated Watershed Restoration Approach
- Additional Floodplain Creation / Connection
- Smaller / Less Imported Riffle Material
- Additional Habitat Structures
 - Toewood
 - O Vanes rather than Sills at Pool Locations
- Additional / More Robust Woody Vegetation
- MBSS Fish Sampling & IBI Scores
- Review the Site and Monitoring Reports (whether you get compensated for this or not!)

Lessons Learned – Put Into Practice

Howard County, MD ULP Font Hill Tributary Restoration

Session H at 2:10 PM

