TriverSHARED.org

Testing and Evaluating in a Southeast Asian Region with Precipitation Events Outside a Precipitation-Based Regional Curve Model's Typical Rainfall Range

Tuesday August 22nd

4:30pm Presented By : Imanthie Bandara and David Bidelspach

Basith Weerasundara, Greg Jennings, Mike Geenen, Ryan Baird, Brad Fairley and George Kelly

Water is the most critical resource issue of our lifetime and our children's lifetime. The health of our waters is the principal measure of how we live on the land.

Luna Leopold

AZQUOTES

Water Security - Concerns

AriverSHARED.org

- Terrorism
- Runoff Rates
- Evaporation/Transpiration
- Waste of Agricultural Water
- Drought
- Industrialization
- Earthquakes
- Climate Change
- World Bank is aware of the seriousness of water-security issues. (Young 2006)
- Since ancient times, limiting access to water has been used as a weapon through the destruction of water resources and distribution facilities

Global Water Distribution

Unit Hydrograph and Water Security

Concerns

AriverSHARED.org

- Catchments
- Diversions
- Cross-basin transfers
- Urbanization
- Stormwater BMPS
- Shape of Watersheds
- Characteristics of Watersheds
- Rainfall Intensity
- Rainfall Quantity
- Unknown concerns

North Carolina Predmont Regional Curve $Q = C(DA)^{x}$ (0) $P = C(DA)^{x}$ (1) $Q = C(DA)^{x}$ (1) (1) $Q = C(DA)^{x}$ (1) (1

TriverSHARED.org

Bankfull Regional Curves (Hydraulic Geometry Relationships)

- Serves as a "data supported" basis for estimating the bankfull discharge and bankfull channel dimension (crosssectional area, width and depth) at selected un-gaged sites, with a known watershed or drainage area.
- Bankfull Discharge Fills a stable channel up to the elevation of the "active" floodplain.

Purpose Bankfull Regional Curves

- Develop a tool to determine "bankfull" stage and discharge in ungaged watersheds.
 - Bankfull is the surrogate for the full range of flows
 M. Gordon 'Reds' Wolman
- Aid in Natural Channel Design.

Aid in River Stability Assessment

- Can only be used in the same hydro-physiographic province?
- How do we know if a Regional Curve is "Wrong"?

- **TriverSHARED.org**
- Greg Jennings
 NCSU 2004

2

Eastern United States Regional Curve

Dunne and Leopold 1978

- Bankfull can have a high degree of uncertainty
- Inner-Berm and other Geomorphic Features should be separated on curves
- There are multiple geomorphic indicators not just bankfull
- It is ok to not "know bankfull"
 - Know where it is not "BKFH" or "BKFL"

Southern Eastern United States Regional Curves

Drainage Area (Square Miles)

"x" = Power Function Slope

Rural	Hydrologic area								
recur- rence	Blue Ridge- Piedmont	Coastal Plain	Sand Hills						
(years)	90 DA ^{0.71}								
2	135 DA 0.702	64.7 DA 0.673	33.5 DA 0.712						
5	242 DA 0.677	129 DA 0.635	55.5 DA 0.701						
10	334 DA 0.662	188 DA 0.615	72.9 DA 0.697						
25	476 DA 0.645	281 DA 0.593	98.1 DA 0.693						
50	602 DA 0.635	367 DA 0.579	120 DA 0.691						
100	745 DA 0.625	468 DA 0.566	143 DA 0.688						
200	908 DA 0.616	586 DA 0.554	170 DA 0.686						
500	1,160 DA 0.605	773 DA 0.539	210 DA 0.684						

Regional Curve

- Constant Slopes x = 0.68
- Time of Concentration
- Rainfall and runoff amounts
- Lag-times, in-phase
- Watersheds can't have a linear Regression Slope
- Average Regression Slope ~0.68 Range 95% (0.61 - 0.76)
- Localized mini-regional curves can be used for design purposes
- Local data (upstream, downstream, nearby streams) are always essential to add confidence to predictive relationships developed elsewhere.
- It is ok to not "know bankfull"

Use Mini-Regional Curves

Without or Without Gages

- Bankfull stage can not always be identified (Local data is useful)
- Use as a tool to determine a design bankfull dimension
- Bankfull dimensions do not always match the local regional relationship

Mini- Regional Curves

- When you don't know bankfull

Comparison of Mini-Curves

-to Published Data

AriverSHARED.org

ross-s	5								Mean													
0									Annual		XS		Dept	BKF WS	Return	Exceedence						
	2		Drainage		0	riginal	1	Discharge	Precipitatio	Velocity	Area	Width	h	Slope	Interva	Probability			Log XS	Log	Log	
		i i i i	Area (sq mi)	C2	X	S Area	C1 .	(cfs)	n (in)	(ft/s)	(sq ft)	(ft)	(ft)	(ft/ft)	I (RI)	(%)	Log DA	Log Q	Area	Width	Depth	
	1 2 5 10 20 50 100 200 50	0 1,000	3	2.1	8.2	21.7	10.4	66	30.7	3.04	17.17	17.67	1.31	0.00056	5 1.4	73.7	0.477121	1.819544	1.23477	1.247237	0.117271	
	Drainage area, in square miles		13	5.6	8.1	66.6	11.9	287	48.6	4.31	45.10	30.67	2.18	0.03363	3 1.8	57.1	1.113943	2.457882	1.654177	1.486714	0.338456	
06300500	East Fork Big Goose Creek near Big Horn, WY	B3c	20	7.4	10.5	92.6	12.4	393	31.2	4.23	78.00	38.76	2.41	0.01373	1.3	76	1.30103	2.594393	1.892095	1.588384	0.382017	
06278300	Shell Creek above Shell Creek Reservoir, WY	C4	23	8.2	10.4	111.4	13.6	358	31.9	3.21	84.80	52.0	2.2	0.00191	L 1.0	98.1	1.361728	2.553883	1.928396	1.715836	0.334454	
06301500	West Fork Big Goose Creek near Big Horn, WY	B3	24	8.4	9.6	98.4	11.7	360	29.7	3.60	5 81.10	58.12	1.69	0.01972	2 1.3	80	1.380211	2.556303	1.909021	1.764326	0.227887	
06311000	North Fork Powder River near Hazelton, WY	B3c	25	8.6	7.6	58.4	6.8	260	25.4	4.69	65.45	37.23	1.6	0.01134	1.6	61.5	1.39794	2.414973	1.81591	1.570893	0.20412	
06222700	Crow Creek near Tipperary, WY	C3	30	9.8	8.4	55.4	5.7	241	. 25.8	3.99	81.6	31.3	1.77	0.013	3 1.5	75.8	1.477121	2.382017	1.91169	1.495544	0.247973	
06622700	North Brush Creek near Saratoga, WY	B3	37	11.2	9.5	106.2	9.5	555	35.9	5.22	2 106.23	44.47	2.39	0.0209	1.7	59.6	1.568202	2.744293	2.026247	1.648067	0.378398	
06299500	Wolf Creek at Wolf, WY	B3	38	11.4	9.3	51.0	4.5	190	24.6	4.07	7 106.75	30.16	1.69	0.02422	2 1.3	76.2	1.579784	2.278754	2.028368	1.479431	0.227887	
06309200	Middle Fork Powder River near Barnum, WY	B3	45	12.8	8.1	81.6	6.4	394	25.3	4.83	3 103.9	36.89	2.21	0.02346	5 1.3	76	1.653213	2.595496	2.016616	1.566909	0.344392	
06222500	Dry Creek near Burris, WY	B3	54	14.5	8.0	67.1	4.6	348	26.7	5.18	3 115.25	59.34	1.19	0.02953	3 1.8	59	1.732394	2.541579	2.061641	1.773348	0.075547	
06223500	Willow Creek near Crowheart, WY	B3c	55	14.7	5.3	39.9	2.7	137	20.5	3.44	1 77.1	34.44	1.18	0.01428	3 1.3	76.3	1.740363	2.136721	1.887054	1.537063	0.071882	
06632400	Rock Creek above King Canyon Canal near Arlington, WY	B3	63	16.1	8.7	186.0	11.6	1030	34.9	5.54	139.3	54.78	3.4	0.00669	1.7	58.9	1.799341	3.012837	2.143951	1.738622	0.531479	
06647500	Box Elder Creek at Boxelder, WY	B3c	63	16.1	9.0	98.5	6.1	392	24.2	3.98	3 144.8	44.08	2.15	0.01073	3 1.5	65.4	1.799341	2.593286	2.160769	1.644242	0.332438	
06623800	Encampment River above Hog Park Creek near Encampment, W	/ B3c	73	17.7	9.0	166.8	9.4	838	45.1	5.02	159.95	58.5	2.87	0.01353	3 1.4	72.3	1.863323	2.923244	2.203984	1.767156	0.457882	
09203000	East Fork River near Big Sandy, WY	B3c	79	18.7	8.9	258.7	13.8	1068	30.4	4.13	3 165.4	97.81	2.7	0.00351	l 1.3	75	1.897627	3.028571	2.218536	1.990383	0.431364	
06265337	Cottonwood Cr at High Island Ranch nr Hamilton Dome	B4c	81	19.0	5.2	39.3	2.1	231	16.9	5.82	2 99.2	29.51	1.41	0.00734	1.5	68.4	1.908485	2.363612	1.996512	1.469969	0.149219	
06260000	South Fork Owl Creek near Anchor, WY	B3c	87	19.9	3.2	63.8	3.2	323	21.5	5.0	63.77	43.38	1.54	0.01509	9 1.3	74.4	1.939519	2.509203	1,804616	1.63729	0.187521	l
06228350	South Fork Little Wind River above Reservoir near Ft Washakie	, B4c	90	20.4	8.6	346.0	17.0	955	29.9	2.76	5 174.7	132.28	2.82	0.00012	2 1.6	62.5	1.954243	2.980003	2.242293	2.121494	0.450249	
06233000	Little Popo Agie River near Lander, WY	B3c	125	25.4	6.1	95.0	3.7	480	22.1	5.06	5 154.35	47.86	1.98	0.00381	L 1.5	67.1	2.09691	2.681241	2.188507	1.679973	0.296665	
06646000	Deer Creek in Canyon near Glenrock, WY	B3c	139	27.3	8.9	152.7	5.6	698	22.8	4.57	7 243.05	64.01	2.42	0.01862	2 2.0	50	2.143015	2.843855	2.385696	1.806248	0.383815	
06218500	Wind River near Dubois, WY	B3c	232	38.4	7.2	212.5	5.5	1000	28.3	4.67	7 277.2	71.65	3	0.0053	3 1.5	64.9	2.365488	3	2.442793	1.855216	0.477121	
06280300	South Fork Shoshone River near Valley, WY	B3c	297	45.4	8.2	371.2	8.2	3400	32.6	8.2	371.21	126.38	2.94	0.00474	1.5	68.5	2.472756	3.531479	2.56962	2.101678	0.468347	
06220500	East Fork Wind River near Dubois, WY	C3	427	57.9	8.2	347.8	6.0	2542	24.8	7.31	472.8	152.45	2.29	0.0061	L 1.4	71.9	2.630428	3.405176	2.674677	2.183127	0.359835	
06279940	North Fork Shoshone River at Wapiti, WY	F3	699	80.5	8.1	669.1	8.3	5955	30.8	8.9	654.7	158.51	4.23	0.00688	3 1.8	54.5	2.844477	3.774882	2.816042	2.200057	0.62634	

"C" = $A_{BKF} / DA^{0.68}$

- Geomorphic Assessment
 - Departure analysis
 - Watershed health

AriverSHARED.org

Watershed Response Factor – "C"

- Wyoming Regional Curve – USGS - 2012

"C" = $A_{BKF} / DA^{0.68}$

Ryan Baird – Spring 2022

Dr. Peter Nelson – CSU Department of Civil and Environmental Engineering

"C" = $A_{BKF} / DA^{0.68}$

Ryan Baird – Spring 2022

Dr. Peter Nelson – CSU Department of Civil and Environmental Engineering

Figure 5. Existing regional curve regression slope distribution

"C" = $A_{\rm RKF} / DA^{0.68}$

Watershed Response Factor

- Properly size a river channel

- Urbanization
 - 4-stage urban channels
 - Do not over widen bankfull discharge
- Terrorism
 - Encourage groundwater recharge
 - Reduce the need for surface water Infrastructure
- Runoff Rates
 - Encourage groundwater storage and
 - Reduced stormwater discharge rates
- Evaporation/Transpiration
 - Reduce the need for surface water infrastructure with large E/T Losses
- Agricultural Water
 - Promote subirrigation
 - Groundwater recharge
- Drought
 - Usable groundwater storage

Watershed Response Factor

Global implications for using a tool to address water security

Watershed Response Factor

- Global implications for using a tool to address water security

Summary:

- Bankfull can have a high degree of uncertainty
- Inner-Berm and other Geomorphic Features should be separated on curves
- Average Regression Slope ~0.68 Range 95% (0.61 0.76)
- Watersheds can't have a linear Regression Slope
- Watershed Response Factor as a geomorphic indicator
- Compare relationships to published USGS Regressions as well as other bankfull regional curves
- Regional curve development for new regions should always be compared to existing data as a reference
- Localized mini-regional curves can be used for design purposes
- Local data (upstream, downstream, nearby streams) are always essential to add confidence to predictive relationships developed elsewhere.

Figure 1. Data taken from United Nations Educational, Scientific, and Cultural Organization, 2006.

Global Water Distribution

Watershed Response Factor as a geomorphic indicator

Compare relationships to published USGS Regressions as well as other bankfull regional curves

Regional curve development for new regions of the Southwest US should always be compared to existing data as a reference

The Y-intercept is strongly dependent on Rainfall

Localized mini-regional curves can be used for design purposes

Site Location for Stream Channel Measurements

Several stream cross-section measurements were taken at a location along Nanu Oya, west of Kandy, SL (yellow star)

Nanu Oya is a major tributary to Mahaweli Ganga, "Great Sandy River", longest river in SL

"Oya" means stream in Sinhalese, one of the native languages of Sri Lanka

A total of 6 cross-sections were measured in this location

~58in/year of Rainfall in Kandy at Confluence with Mahaweli Ganga

~91 in/year of Rainfall in Kadugannawa at Headwaters of Nanu Oya

Average ~ 74.5 in/year over the watershed

Map of the Location of Measured Cross Sections

91″

~58in/year of Rainfall in Kandy near Confluence with Mahaweli Ganga

~91 in/year of Rainfall in Kadugannawa at Headwaters of Nanu Oya (Cloud Forest)

Average ~ 74.5 in/year over the watershed

Location	Drainage Area	XS Area	WRF
XS1	18.5	188	26.6
XS2	14.5	151	25.2
XS3	8.9	114	26.4
XS4	7.8	101	25.5
XS5	6.7	90	25.2
XS6	4.2	68	26.0

Summary - Good Comparison with Rough Data

Next Steps

- Collect Better Topographic Data
- Resurvey the data with Total Station (Maybe Summer/Fall 2024)
- Short Courses with University of Peradeniya (Maybe Summer/Fall 2024)
- Collect more Sri- Lankan River Data
- Create an Elementary, Summer VBS/Camp or After School Stream Program
- Adventure with RiverSHARED for a week in Sri Lanka Summer/Fall 2024 (Small group ~5 team members)
 - Mini-Regional Curve Development Training
 - Learn about Fluvial Geomorphology of Sri Lanka Training
 - Help teach Short Courses at UP
 - Help Organize a River Day with Youth Program
 - Safari with Elephants on the beach of the Indian Ocean
 - See Sri Lanka The country is beautiful, and the currency exchange is generous
 - Have a cup of Tea and tour a plantation

Questions ? Comments !

Thank you for your time Imanthie Bandara imanthie.bandara@fivessr.com 970-393-1355

> David Bidelspach dave@fivessr.com 919-218-0864

GriverSHARED.org