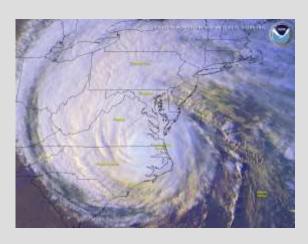


Guidance for Climate Resilience of Tidal and Near-Tidal Waterway Crossings

Prepared for: National Stream Restoration Conference Technical Breakout L Session: Flooding, Erosion, Urban Infrastructure & Tidal Creek Restoration Prepared by:

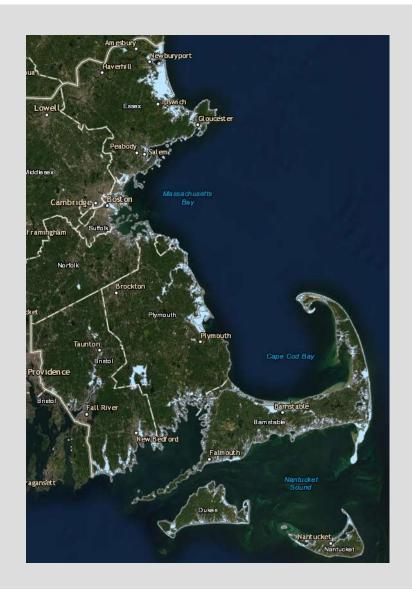


55 EA Engineering, Science, and Technology, Inc., PBC

Katherine Blair

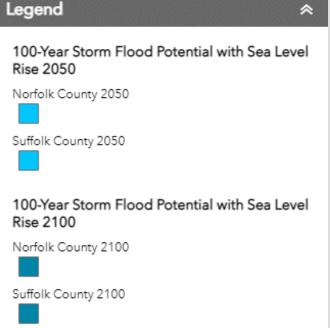
Overview

- The Issue: Climate change is transitioning upland river, stream, and waterway crossings to tidal crossings
- Objectives: Identify transitional crossings and provide guidance to enhance system resilience
- Elements of the Project: Guidance documents and pilot site assessments



Waterway Crossings in the Tidal and Transitional Zone

- Crossing in the tidal zone have been designed for a certain range of sea level and stormwater runoff/ riparian flow
- The problem: SLR, storm surge as well as precipitation runoff are changing –
 - Impacting current crossings differently than they were designed
 - Involving crossings never designed for tidal flow (transitional crossings)
- In Massachusetts there are in excess of 10,000 tidal and transitional crossings
 - In Maryland there are likely many more
 - In the US there could be 1M+

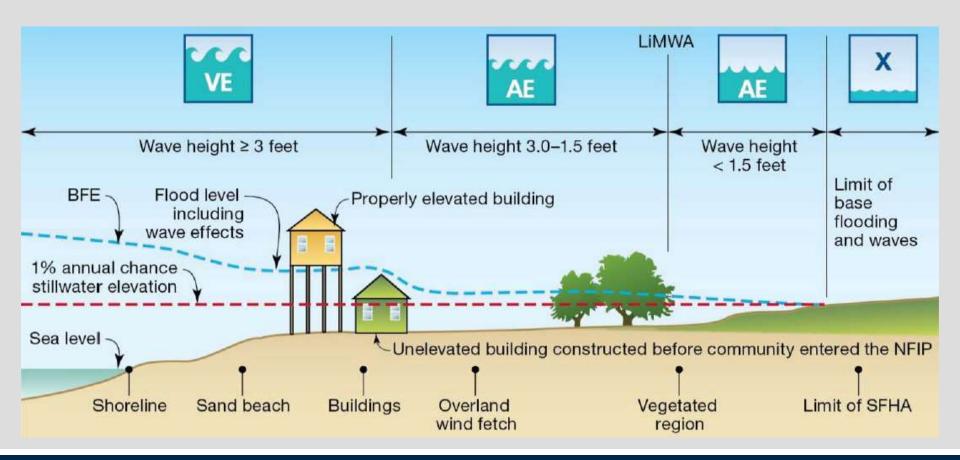


Transitional Zone Definition

- For this project: The near-coastal area that is expected to be impacted by climate change by the year 2100. This includes:
 - Projected Sea Level Rise flat water impacts
 - Storm-surge related impacts including wave and precipitation impacts

Transitional Zone Definition — Sea Level Rise

- For this project: SLR is defined by the Resilient MA level for 'High' to provide a conservative level of impact.
 - Attached to the highest tide on a daily basis the MHHW (Mean Higher High Water)


Scenario	Probabilistic Projections	2030	2050	2070	2100
Intermediate	Unlikely to exceed (83% probability) given a high emissions pathway (RCP 8.5)	0.6	1.3	2.3	4.0
Intermediate - High	Extremely unlikely to exceed (95% probability) given a high emissions pathway (RCP 8.5)	0.8	1.7	2.9	5.1
High	Extremely unlikely to exceed (99.5% probability) given a high emissions pathway (RCP 8.5)	11	2.4	4.2	7.7
Extreme (Maximum physically plausible)	Exceptionally unlikely to exceed (99.9% probability) given a high emissions pathway (RCP 8.5)	1.3	3.1	5.4	10.3

Resilient MA, Climate Change Clearinghouse for the Commonwealth

Transitional Zone Definition – Storm Impacts

- 1% annual chance stillwater elevation includes coastal storm surge and precipitation runoff within the defined flood plain.
- BFE Base Flood Elevation (FEMA 100-yr floodplain) incorporates hydrodynamic wave modeling and wave runup to identify water elevation along the coast.

Project Objectives

- To facilitate natural resource and infrastructure planning by developing guidance for waterway crossings within near-coastal environments that will experience the impacts of climate change and SLR within the century.
- To support the identification, prioritization, and planning of crossing replacements to enhance both resource and infrastructure resiliency where replacements in the transitional zone may be planned.

Resilient Crossing Systems

- The Massachusetts State Hazard Mitigation and Climate Adaptation Plan defines resilience as "the ability of a system and its component parts to anticipate, absorb, accommodate, or recover from the effects of a hazardous event in a timely and efficient manner".
- In the context of waterway crossings:
 - Resilient coastal wetlands can avoid SLR inundation by gradually migrating landward into available suitable habitat
 - Resilient infrastructure is designed and constructed to remain functional while SLR and climate changes
 - Resilient coastal communities can avoid flood damages associated with crossings and rely on crossings to support local economies and to transport people during emergencies

Project Deliverables

- Guidance for Enhancing Climate Resilience of Waterway Crossings within Coastal and Near-Coastal Environments
 - Based on 10 Resilience Criteria
 - Adaptation and Resilience Strategies
 - Full watershed context
- Tidal and Transitional Crossing Field Assessment Guidance
- Pilot Assessment Results 12 sites
- GIS Transitional Crossing Assessment Tool
- Technical Assistance Committee (TAC) meeting minutes

Guidance for Enhancing Climate Resilience of Waterway Crossings within Coastal and Near-Coastal Environments

Prepared for

Department of Fish and Game Division of Ecological Restoration 251 Causeway Street, Suite 400 Boston, Massachusetts 02114

Prepared by

EA Engineering, Science, and Technology Inc., PBC 301 Metro Center Boulevard, Suite 102 Werwick, Rhode Island 02886

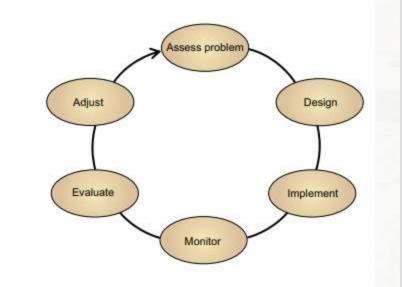
> June 2021 Version: FINAL EA Project No. 1580002

10 Resilience Criteria

Resilience Criteria	Optimum Situation
Crossing Condition	Crossing type, material and dimensions are conducive to effective tidal flow
Tidal Restriction	Crossing does not restrict tidal flow at target design year
Aquatic Organism Passage	Crossing does not impede aquatic organism passage at target design year
Tidal Marsh Migration Potential	Crossing will not impede upstream tidal marsh migration at target design year
Vegetation	Crossing has no noticeable effect on upstream versus downstream marsh vegetation
Sensitive Species	Crossing has no noticeable effect on sensitive species
Accessibility	Loss of crossing would not impede transportation and access to critical sites
Crossing Infrastructure Risk	Crossing is not vulnerable to flood inundation at target design year
Adverse Impacts	Restoring full tidal range at the crossing will not adversely affect upstream infrastructure at target design year
Environmental Justice	Crossing does not negatively impact environmental justice populations at target design year

Adaptation and Resilience Strategies

- Accommodate Focus on altering existing structures and environments and building new crossings that are better able to withstand sea level rise and storm surge, e.g.:
 - Submersible bridge decks
 - Raise existing marsh elevation
- **Protect** Solutions to decrease risks for existing structures and environments without changing existing items or features, e.g.:
 - Tide gates
 - Seawalls
 - Restore coastal wetlands
- Managed Retreat Relocation of crossings and limiting construction of new crossings within areas anticipated to be flooded, e.g.:
 - Replace a crossing upstream of existing location
 - Establish marsh migration corridors



Adaptive Management

Adaptive management involves implementing a management strategy, monitoring its effects, and then adapting future actions based on the observed results.

Guidance Use Example

Crossing Site Example

Newbury, Essex County, MA

Crossing Site Example

Newbury, Essex County, MA

Massachusetts Tidal Crossing Field Assessment Protocol Data Sheet (v. 04/26/2022)

Town & Location N		Newbury - Orchard Stre	et over Cart Creek		
	Lat./Long.	42,760871,-70	COLUMN TO SERVICE SERV	J	
Observer(s) &	J. Koerner & M. Car	d - Alfred Benesch & Co.	TidePrediction	High	Low
Organization:			Time	6:51 am	2:01 pn
Date	4/21/2021		Elevation (ft):	7.5	0.9
Start Time:	1:45 pm		Talle Chart Separation	Newhorsport N	Arrenach Rive
End Time:	2:30 pm		Constact alto yield salction	one have of how in	in /paralle
Ex. Tidal Status:	Low Tide		If more stake record N/A.		
	opening and suppo	consists of large dry laid sto rt the roadway. n consists fo flat salt marsh t			CIVII

PHOTOGRAPHS				
Photo File Names:		Photo Comments		
1-Newbury	View of upstream opening			
2-Newbury	Upstream view from above structure			
3-Newbury	Downstream view from above structure			
4-Newbury	View of downstream opening			
5-Newbury	View of upstream vegetation			
5-Newbury	View of downstream vegetation			
7-Newbury	View of roadway direction Lkg West			
8-Newbury	View of roadway direction Lkg fast			
9-Newbury	West of utility	Water main under tridge at downstream side partially blocks opening and is the hydraulic low chord		
10-Newbury	View of underside of crossing Lkg Downstream			

Page 1

lamber MADER TakirDrowing Residents (2010x 77 majority
Cate Steet

Crossing Site Example

Newbury, Essex County, MA

Guidance Use Example – Newbury Summary

- •Crossing Condition 'fair' may require work in near term; this situation, instead of SLR/BFE may dictate timing of work; water main issue
- Tidal restriction potential appears low
- -Aquatic Passage appears good
- Marsh migration there is some opportunity upstream
- Vegetation appears good
- Sensitive species some are in close proximity
- Accessibility Minor road; further research needed
- •Crossing infrastructure risk SLR may be ok to 2100, BFE impact by 2050 likely
- Adverse impact no issues identified
- Environmental Justice no issues idenfied
- -Summary Based on 'fair' condition crossing could be updated to accommodate high flood waters and increased tidal flow.

An Important Tool

The Guidance can be used to:

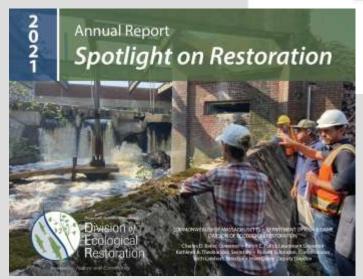
- Assess projected impacts at a site
- Plan for possible solutions
- Formulate watershed or regional plan
- Create adaptation plan for crossings

Next Steps

- Monitoring for adaptive management
- Additional information to refine the Guidance
- Community needs
- Sources of funding for identified projects
- Expansion of use to other coastal areas
 - Swan Creek watershed, Prince George's County, Maryland

EΔ

Swan Creek Climate Resilience Assessment of Waterway Crossings and Stormwater Outlets


Propertyl for

Department of Polisic Works and Transportation Office of Storm Dean Maintenance 8400 Dairy Band. Daniet Heights. Maryland 20347

Property I

EA Enganning, Science, and Technology Inc., PBC 225 Schilling Circle, Sec 400 Blue Valley, Maryland 21811

April 2021 Virgoni DRAPT EA Proprii No. 1612/Vit

Thank You!

Katherine Blair Environmental Scientist kblair@eaest.com

